Chapter 31

1. (@) All the energy in the circuit resides in the capacitor when it has its maximum
charge. The current is then zero. If Q is the maximum charge on the capacitor, then the
total energy is
2
2 (290x10°°C
@ ) 117010
2C  2(360x10°°F)

(b) When the capacitor is fully discharged, the current is a maximum and all the energy
resides in the inductor. If I is the maximum current, then U = LI%/2 leads to

2(1168x10°J
|=1/£:\/( ~ ):5.58><10‘3A.
L 75x10°H

2. (a) We recall the fact that the period is the reciprocal of the frequency. It is helpful to
refer also to Fig. 31-1. The values of t when plate A will again have maximum positive
charge are multiples of the period:

n n
t,=nT=—=— —n(5005),
A f  200x10°Hz (500.5)

wheren=1, 2, 3,4, .... The earliest time is (n = 1) t, =5.00xs.

(b) We note that it takes t =4 T for the charge on the other plate to reach its maximum

positive value for the first time (compare steps a and e in Fig. 31-1). This is when plate A
acquires its most negative charge. From that time onward, this situation will repeat once
every period. Consequently,

1 e Lo o (2n-1)  (2n-1)
t= T+ (-T =5 (=T =" _2(2><103Hz)_(2n )(250ss).

wheren=1,2, 3,4, .... The earliest time is (n = 1) t=2.50s.
(c) At t=4T, the current and the magnetic field in the inductor reach maximum values

for the first time (compare steps a and c in Fig. 31-1). Later this will repeat every half-
period (compare steps ¢ and g in Fig. 31-1). Therefore,
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T (-7 T
t =+ 0V (an-1) = (2n-1)(1.2545),

wheren=1,2, 3,4, .... The earliest time is (n = 1) t=1.25us.
3. (a) The period is T = 4(1.50 ws) = 6.00 zs.

:L=ZI_67><1O5 Hz.
1S

. ) ) 1
b) The frequency is the reciprocal of the period: f ==
(b) guency p p =500

(c) The magnetic energy does not depend on the direction of the current (since Ug o i?),
so this will occur after one-half of a period, or 3.00 zs.

4. We find the capacitance from U = 1Q?/C:

-6 2
_Q_(80<107C) o ook
2U  2(140x107%J)

5. Accordingto U =1 LI? = 1Q?/C, the current amplitude is

Q 300x10°C

_Q = 452107 A.
JLC  [(110x10°H)(4.00x10°F)

6. (2) The angular frequency is

w:\/E:\/F/x: SON =89rad/s.
m V m (20x10"m)050kg)

(b) The period is 1/f and f = w2 7. Therefore,

2n 2n

= =7.0x107s.
® 89rad/s

(c) From @ = (LC)™2, we obtain

c--1_ L _2s5x10°F
o°L  (89rad/s) (50H)

7. Table 31-1 provides a comparison of energies in the two systems. From the table, we
see the following correspondences:
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X< q, k<—>£, m< L, v:%ed—q:i,
C dt dt
2
lkx2<—> q_’ 1mv2<—>£Li2.
2 2C 2 2

(@) The mass m corresponds to the inductance, so m = 1.25 kg.

(b) The spring constant k corresponds to the reciprocal of the capacitance. Since the total
energy is given by U = Q¥2C, where Q is the maximum charge on the capacitor and C is
the capacitance,

_ Q@ (175x10° cy

=269x10°F
S 2U 2(570x10°))

and
1

T 269x10°m/N

=372 N/m.

(¢) The maximum displacement corresponds to the maximum charge, so
X =1.75%x107 m.

(d) The maximum speed Vmax coOrresponds to the maximum current. The maximum
current is

—0 Q 175x10°C

~302x10°A.
AL \/125H 269x10°°F)

Consequently, Vmax = 3.02 x 107 m/s.

8. We apply the loop rule to the entire circuit:

g di 9
Ewoa =€, TE, TEg +=Q |6 TEc +& . —+—+IR L—+—+iR
total — ©L, c R ZJ:( L, T ec R) ZJ:( It C JJ dt C
with
1
=YL, 2-3o R-3R

j i~ i

O|._\

and we require &ota = 0. This is equivalent to the simple LRC circuit shown in Fig. 31-
26(D).

9. The time required is t = T/4, where the period is given by T=27/w=27z+/LC.
Consequently,
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/ 27.,/(0.050H)(4.0x10°°F
t:I: 27[ 4LC _ \/( 4).( ) =7.OX10_4 S.

10. We find the inductance from f =w/ 27 =<27z\/ LC )_1.

1 1

L=— = _ ~3.8x10° H.
4z°f°C 47°(10x10° Hz) (6.7x10°F)

11. (a) Since the frequency of oscillation f is related to the inductance L and capacitance
C by f =1/2n,/LC, the smaller value of C gives the larger value of f. Consequently,

f..=1/2zLC,, . f. =1/2zLC,,, and

f . \/Cusx /365pF
max_ = =6.0.
fun  /Cuin  +1OPF

(b) An additional capacitance C is chosen so the ratio of the frequencies is

_ 160MHz

r=—=296.
0.54 MHz

Since the additional capacitor is in parallel with the tuning capacitor, its capacitance adds
to that of the tuning capacitor. If C is in picofarads (pF), then

JC+365pF _
JC+10pF

o (365pF)—(2.?6)2(1O pF) _ 360F.
(2.96)° -1

The solution for C is

(c) We solve f =1/2n+/LC for L. For the minimum frequency, C = 365 pF + 36 pF =
401 pF and f = 0.54 MHz. Thus

1 1
(27)°CE?  (27)’ (401x10 F)(0.54x10° Hz )

L: :2.2X1074 H.

12. (a) Since the percentage of energy stored in the electric field of the capacitor is
(1—75.0%) = 25.0%, then
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2
Ye _72C o500
U Q°/2C
which leads to q/Q =+/0.250 =0.500.
(b) From
12
U _ L|2/2 _ 750%,
U LI%/2

we find i/1=+/0.750 =0.866.

13. (a) The charge (as a function of time) is given by q=Qsinwt, where Q is the

maximum charge on the capacitor and @ is the angular frequency of oscillation. A sine
function was chosen so that q = 0 at time t = 0. The current (as a function of time) is

. dg
i=—= cosat,
ot @Q COS

andatt=0, itis | = «Q. Since ®=1/,/LC,

Q=IJ/LC = (2.00A)\/(3.00 x10° H)(2.70x10"° F) =180x10™* C.

(b) The energy stored in the capacitor is given by

q° Q°sin’at
U E ==
2C 2C
and its rate of change is
dU. Q’w sinwtcoswt

dt C

We use the trigonometric identity coswtsinet = 1sin(2wt) to write this as

2
U :ﬂsin(Za)t).
dt 2C

The greatest rate of change occurs when sin(2at) = 1 or 2wt = /2 rad. This means

=2 " LC=1\/(3.oox10-3H)(2.7ox1o-6F)=7.07><10-Ss.

T 4o 4 4

(c) Substituting @ = 24T and sin(2et) = 1 into dUg/dt = (wQ?/2C) sin(2«t), we obtain
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(dUEj _27rQ2_7rQ2
dad ). 2TC TC

Now T =27+/LC =27,(300x10"* H)(2.70x10°° F) =5655x10°*s, 50

du.\  7(180x10*C) e6 7w
(dt jmax_(5.655><104s)(2.70><10GF)_ S

We note that this is a positive result, indicating that the energy in the capacitor is indeed
increasing at t = T/8.

14. The capacitors C; and C; can be used in four different ways: (1) C; only; (2) C, only;
(3) Cy and C; in parallel; and (4) C; and C; in series.

(a) The smallest oscillation frequency is
1 1

2z L(C4C,) 27[(L.0x102 H)(2.0x10 ° F+5.0x10° F)

(b) The second smallest oscillation frequency is

f, =6.0x10% Hz.

1 1

_ _ =7.1x10?Hz.
2z JLC, 27r\/(1.0><10_2H)(5.0><10_6F) e

fl

(c) The second largest oscillation frequency is

1 1

- = =1.1x10°Hz .
27 LC, Zﬁ\/(1.0x10‘2H)(2.0><10‘6F)

2

(d) The largest oscillation frequency is

f, =1.3x10°Hz.

~ 1 1 2.0x10 °F+5.0x10"°F
2z, JLCC,/(C,+C,)  27Y(10x107H)(2.0x10 ° F)(5.0x10 °F)

15. (a) The maximum charge is Q = CVimax = (1.0 x 10° F)(3.0 V) = 3.0 x 10° C.

(b) From U =1 LI1? =1Q%/C we get
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Q 30x10° C

| = = =17x10°A.
JLC  [(30x10° H)(L0x10° F)

(c) When the current is at a maximum, the magnetic energy is at a maximum also:

1 1

Ug =5 LI =E(B.O><10’3 H)(L7x10° A)' =45x10°J.

B,max

16. The linear relationship between & (the knob angle in degrees) and frequency f is

f-f, (1+ij:> p-180°[ 1 _1
180° f,

where fy = 2 x 10° Hz. Since f = w/27=1/27 /LC , we are able to solve for C in terms of
g:
1 81

" 4nLEZ(1+0/180°) 40000077 (180°+6)

with SI units understood. After multiplying by 10" (to convert to picofarads), this is
plotted below:

17. (a) After the switch is thrown to position b the circuit is an LC circuit. The angular
frequency of oscillation is @ =1/~/LC . Consequently,

@ 1 1
“2r 2zdlC 27,/(54.0x10* H)(6.20x10°° F)

f =275 Hz.

(b) When the switch is thrown, the capacitor is charged to V = 34.0 V and the current is
zero. Thus, the maximum charge on the capacitor is Q = VC = (34.0 V)(6.20 x 10° F) =
2.11 x 107* C. The current amplitude is
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(b) Since f = w27, the frequency is

1 1
2m/Le 2;z\/(3.60x10*3 H)(4.00x10° F)

=1.33x10°Hz.

(c) Referring to Fig. 31-1, we see that the required time is one-fourth of a period (where
the period is the reciprocal of the frequency). Consequently,

%T:i= ! —188x10* s,

t=
4f 4(1.33><103 Hz)

21. (a) We compare this expression for the current with i = | sin(wt+¢). Setting (wt+4g) =
2500t + 0.680 = /2, we obtain t = 3.56 x 10™s.

(b) Since @ = 2500 rad/s = (LC)™?,

Lo L 1 25010~ H,

®’C (2500rad /s)’(64.0x10° F)

(c) The energy is

U= % LI = %(2.50 x107 H)(L60A)" =320x107J.

22. For the first circuit @ = (LsC1)™?, and for the second one @ = (L,C,) ™. When the

two circuits are connected in series, the new frequency is

1 1

\/ .Ceq J (L +L,)CC,/(C,+C,) \/(L1c1c2+chzcl)/(cl+cz)
1

\/L1C1 J(C,+C,)/(C,+C,)

where we use o' =,/L,C, =./L,C,.

23. (a) The total energy U is the sum of the energies in the inductor and capacitor:

=a)'

¢ L (380x10°C)" (9.20x10°A)(25.0x10°H) 6
U= V=267 o a00 ) 5 ~1.98x10°°J.
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(b) We solve U = Q?%/2C for the maximum charge:

Q=+2CU = \/ 2(780x107° F)(198x107°J) =556 x 10" C.

(c) From U = I°L/2, we find the maximum current;

2(198x10°°J
| = ‘/2—U= (—_3)=126><10‘2A.
L 250x107°H

(d) If qo is the charge on the capacitor at time t = 0, then go = Q cos ¢ and

-6
$=cos (%j =cos™ [—3'80 <10 CJ = +46.9°.

556 x107°C

For ¢ = +46.9° the charge on the capacitor is decreasing, for ¢ = —46.9° it is increasing.
To check this, we calculate the derivative of g with respect to time, evaluated for t = 0.
We obtain —@Q sin ¢, which we wish to be positive. Since sin(+46.9°) is positive and
sin(—46.9°) is negative, the correct value for increasing charge is ¢ = —-46.9°.

(e) Now we want the derivative to be negative and sin ¢ to be positive. Thus, we take
¢ =+46.9°.

24. The charge g after N cycles is obtained by substituting t = NT = 22N/@' into Eq.
31-25:

q=Qe ™'* cos(a't+4¢)=Qe """ cos| ' (22N / ')+ ¢ |
_ Qe—RN(Zﬂm>/2L COS(27ZN +¢)
= Qe "RVt ¢os g,

We note that the initial charge (setting N = 0 in the above expression) is go = Q cos 4,
where go = 6.2 «C is given (with 3 significant figures understood). Consequently, we

write the above result as g, =q, exp(—NnR\/C / L).

(a) For N =5, g, =(6.24C)exp(-57(7.202),/0.0000032F/12H ) =5.854C.

(b) For N = 10, ¢, =(6.24C)exp(~107(7.202)/0.0000082F/12H ) =5.524C.

(c) For N = 100, @y, 2(6.2,uC)eXp(—1007r(7.2Q)\/0.0000032 F/12H ):1.93,uC.
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25. Since w ~ @', we may write T = 21t/ as the period and @ =1/+LC as the angular
frequency. The time required for 50 cycles (with 3 significant figures understood) is

t =50T =50 (%”J - 50(2NE) - 50 (Zﬂ\/(220x103 H)(12.0x10°° F))

=0.5104s.

The maximum charge on the capacitor decays according toq, . = Qe */*" (this is called
the exponentially decaying amplitude in Section 31-5), where Q is the charge at timet =0
(if we take ¢ = 0 in Eqg. 31-25). Dividing by Q and taking the natural logarithm of both

sides, we obtain
In M = _&
Q 2L

2(220x10*H
S O )In(0.99):8.66><103§2.
t | Q 0.5104s

which leads to

26. The assumption stated at the end of the problem is equivalent to setting ¢ = 0 in Eq.
31-25. Since the maximum energy in the capacitor (each cycle) is given by g2, /2C,

where gmax 1S the maximum charge (during a given cycle), then we seek the time for
which

e _ 1 Q° Q

= =—.
2C 22C vax J2

Now (max (referred to as the exponentially decaying amplitude in Section 31-5) is related
to Q (and the other parameters of the circuit) by

Rt

— Qe "2t — || dmax | _ R
oo onfi) -8

Q
Setting q,,,, = Q/~/2 , we solve for t:

2L (q 2L (1) L
t=—S"|n|2mx = 25| = |==In2.
R [Qj R (Iz) R

The identities In(l/x/E)z—In\/_:—%an were used to obtain the final form of the
result.

27. Let t be a time at which the capacitor is fully charged in some cycle and let gmax1 be
the charge on the capacitor then. The energy in the capacitor at that time is
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U (t) — qr?naxl — Q_Ze—Rt/L
2C 2C

where
—Rt/2L
qmaxl = Qe

(see the discussion of the exponentially decaying amplitude in Section 31-5). One period
later the charge on the fully charged capacitor is

_ 27
Oace = Qe FED#E where T=—,
(0]

and the energy is
U(t+T)=—q§qaxz =Q_29—R(t+T)/L .
2C 2C

The fractional loss in energy is

JAU| U(t)-U(t+T) e/t —g DIt
U U(t) g Rt

—1_g Rt

Assuming that RT/L is very small compared to 1 (which would be the case if the
resistance is small), we expand the exponential (see Appendix E). The first few terms are:

2T2

If we approximate o~ @', then we can write T as 27/ @. As a result, we obtain

| AU |z1_[1_ﬂ+...)z RT 27R
U L

28. (a) We use | = &X. = ayCe:
| =w,Ce, =27f,Cs, =27(1.00x10°Hz)(1.50x10°F)(30.0 V) =0.283 A .
(b) 1 = 27(8.00 x 10° Hz)(1.50 x 107 F)(30.0 V) = 2.26 A.

29. (a) The current amplitude | is given by | = V\ /X, where X, = ayL = 2af4L. Since the
circuit contains only the inductor and a sinusoidal generator, V| = &y. Therefore,

1=V %n 30.0v ~0.0955A =95.5 mA.,

X_ 27f,L 27(1.00x10°Hz)(50.0x10°H)
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(b) The frequency is now eight times larger than in part (a), so the inductive reactance X,
Is eight times larger and the current is one-eighth as much. The current is now

| =(0.0955 A)/8 =0.0119 A =11.9 mA.
30. (a) The current through the resistor is

| =0 _ 300V _ o0 A.
R 5000

(b) Regardless of the frequency of the generator, the current is the same, | =0.600 A .

31. (a) The inductive reactance for angular frequency ay is given by X, =@,L , and the
capacitive reactance is given by Xc = 1/aq4C. The two reactances are equal if ayl = 1/w4C,
or w, =1/-/LC . The frequency is

@, 1 1

~ % _ - =6.5x10% Hz.
27 27JLC  27,/(6.0x10°H)(10x10°F)

d

(b) The inductive reactance is
XL = anl = 27f4L = 27(650 Hz)(6.0 x 10 H) = 24 Q.
The capacitive reactance has the same value at this frequency.

(c) The natural frequency for free LC oscillations is f =@ /27 =1/2z+/LC , the same as
we found in part (a).

32. (a) The circuit consists of one generator across one inductor; therefore, &, = V.. The
current amplitude is

| =m _ %m 250V =522x10° A

X w,L (377 radis)(12.7 H)

(b) When the current is at a maximum, its derivative is zero. Thus, Eq. 30-35 gives g =0
at that instant. Stated another way, since &(t) and i(t) have a 90° phase difference, then &(t)
must be zero when i(t) = I. The fact that ¢ = 90° = /2 rad is used in part (c).

(c) Consider Eq. 31-28 with e =—¢, /2. In order to satisfy this equation, we require

sin(agt) = —1/2. Now we note that the problem states that ¢ is increasing in magnitude,
which (since it is already negative) means that it is becoming more negative. Thus,
differentiating Eqg. 31-28 with respect to time (and demanding the result be negative) we
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(b) We describe three methods here (each using information from different points on the
graph):

method 1: At ay = 50 rad/s, we have Z ~ 700 Q, which gives C = (wn/ZZ- R?) ™ = 41 4F.
method 2: At @y = 50 rad/s, we have Xc = 500 Q, which gives C = (ay Xc)*l =40 uF.
method 3: At @y = 250 rad/s, we have X¢ ~ 100 Q, which gives C = (ay Xc) ™' = 40 uF.
37. The rms current in the motor is

I — grms — 8rms — 420V — 7.61A.

"z Raxi 4500 +(3200)

38. (@) The graph shows that the resonance angular frequency is 25000 rad/s, which
means (using Eq. 31-4)

C = (&’L) ™ = [(25000)* x200 x 10°°]* = 8.0 4F.

(b) The graph also shows that the current amplitude at resonance is 4.0 A, but at
resonance the impedance Z becomes purely resistive (Z = R) so that we can divide the
emf amplitude by the current amplitude at resonance to find R: 8.0/4.0 = 2.0 Q.

39. (@) Now X_ = 0, while R = 200 Q and Xc = 1/24f,C = 177 Q. Therefore, the
impedance is

Z = R?+ X2 =/(200Q)* + (177Q)* = 2672

(b) The phase angle is
¢=tan™ A Xe |t L2172 gy 5
R 200Q

(c) The current amplitude is
|=fn 300V 41354,
Z 267Q

(d) We first find the voltage amplitudes across the circuit elements:

V, = IR=(0.135A)(200Q) ~ 27.0V
V, =X, =(0.135A)(177Q) ~ 23.9V

The circuit is capacitive, so | leads ¢,,. The phasor diagram is drawn to scale next.
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40. A phasor diagram very much like Fig. 31-11(d) leads to the condition:
VL = V¢ =(6.00 V)sin(30°) = 3.00 V.
With the magnitude of the capacitor voltage at 5.00 V, this gives a inductor voltage

magnitude equal to 8.00 V. Since the capacitor and inductor voltage phasors are 180° out
of phase, the potential difference across the inductor is —8.00 V.

41. (a) The capacitive reactance is

1 1 1

c = = = i = 37.9Q .
0,C 27f,C  27(60.0 Hz)(70.0x10 °F)

The inductive reactance 86.7 Q is unchanged. The new impedance is

Z =R?+(X_ - X)? =4/(200Q)? + (37.9Q-86.7Q)? = 206Q2.

(b) The phase angle is

200Q2

(c) The current amplitude is
| =0 350V 51754,
Z 2060

(d) We first find the voltage amplitudes across the circuit elements:

V, = IR =(0.175 A)(200Q) =35.0 VV
V, =IX_ =(0.175 A)(86.7Q) =15.2 V
V. = IX, =(0.175 A)(37.9Q) = 6.62V
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44. (a) The capacitive reactance is

1 1

X, = = =166 Q.
27fC~ 27(400 Hz)(24.0x10°°F)

(b) The impedance is

Z =JR2+ (X = Xo)? ={R2+ (27 fL— X, )?
= J(220Q)? +[27(400 Hz)(150x10° H)-16.6 QF =422 Q.

(c) The current amplitude is

| =fn_220V oo
Z 4220

(d) Now X, oc C;. Thus, Xc increases as Ceq decreases.

(e) Now Cg¢q = C/2, and the new impedance is

Z =/(220 Q)? +[2m(400 Hz)(150x10° H)—2(16.6 Q)] =408 Q<422 Q.
Therefore, the impedance decreases.
(f) Since | oc Z7*, it increases.

45. (a) Yes, the voltage amplitude across the inductor can be much larger than the
amplitude of the generator emf.

(b) The amplitude of the voltage across the inductor in an RLC series circuit is given by
V., =IX_ =lw,L. At resonance, the driving angular frequency equals the natural angular

frequency: w, =@ =1/+/LC . For the given circuit
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L 1.0 H
JLC /(1.0 H)(1.0x10°°F)

=1000 Q.

L

At resonance the capacitive reactance has this same value, and the impedance reduces
simply: Z = R. Consequently,

| =%m _én 10V oAl
R 100

resonance

The voltage amplitude across the inductor is therefore
V, =IX, =(1.0A)(1000 Q) =1.0x10° V
which is much larger than the amplitude of the generator emf.

46. (a) A sketch of the phasors would be very much like Fig. 31-9(c) but with the label
“Ic” on the green arrow replaced with “Vg.”

(b) We have IR =1 Xc, or
1
(O] C

IR=1Xc - R=

whichyields f=2t-_1 _ L ——_—159 Hz.
27 27RC 27(50.0 Q)(2.00x10° F)

(c) ¢ =tan*(-Vc/VR) = — 45°.

(d) ey = 1/RC =1.00 x10° rad/s.

(€) I = (12 V)[R + X2 = 6/(25\2) ~170 mA.

47. (a) For a given amplitude &, of the generator emf, the current amplitude is given by

& &

m

|=in .
Z R +(0,L-1/0,C)

We find the maximum by setting the derivative with respect to @, equal to zero:

dl
do,

B} 1 1
=—(E),[R*+(w,L-1/ @ ,C)?] 3’2{% L- a)dC} [L+ a)jc} :
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49. (a) Since Leg = L1 + Ly and Ceq = C1 + C; + Cj for the circuit, the resonant frequency
is
1 1

w= =
27 LCy  27(L+L,)(C,+C,+C,)

1
271\/(1.70><10‘3 H+2.30x107° H)(4.OO><10‘6 F+2.50x10° F+3.50x10°° F)
=796 Hz.

(b) The resonant frequency does not depend on R so it will not change as R increases.
(c) Since @ o (Ly + Ly)™?, it will decrease as L; increases.

(d) Since @ o« C,;* and Ceq decreases as Cs is removed, o will increase.

50. (a) A sketch of the phasors would be very much like Fig. 31-10(c) but with the label
“I.” on the green arrow replaced with “Vg.”

(b) We have Vg = V| which implies
IR=IXL - R=awlL
which yields f= oy/27=R/27L = 318 Hz.
(C) ¢ =tan (VL /VR) = +45°.
(d) g = RIL = 2.00x10° rad/s.

(€) 1 = (6 V)ARZ+ X2 = 3/(40\2) ~ 53.0 mA.

51. We use the expressions found in Problem 31-47:

" _ +/3CR++/3C?R? +4LC " _ —3CR++/3C?R? +4LC
: 2LC P 2LC '

We also use Eq. 31-4. Thus,

Aoy, o,-w, 2+/3CRA/LC _R 3C

® @ 2LC L

For the data of Problem 31-47,
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3(200x 10 F
A% _ (5000 (200<107F) 0 102
w 100H

This is in agreement with the result of Problem 31-47. The method of Problem 31-47,
however, gives only one significant figure since two numbers close in value are
subtracted (an — @,). Here the subtraction is done algebraically, and three significant
figures are obtained.

52. Since the impedance of the voltmeter is large, it will not affect the impedance of the
circuit when connected in parallel with the circuit. So the reading will be 100 V in all
three cases.

53. (a) Using Eq. 31-61, the impedance is

Z = R+ (X~ Xo) =(12.0Q) +(1.30Q-0) =121 0.
(b) The average rate at which energy has been supplied is

2 2
=i (120v) (12'? ) _1.186x10° W ~1.19x10° W,
z (12.07 Q)

54. The amplitude (peak) value is
Vi = V2V, = /2(100V) = 141V,

55. The average power dissipated in resistance R when the current is alternating is given
by P, = 1R, Where I is the root-mean-square current. Since I, = | /2, where I is
the current amplitude, this can be written Payg = I°R/2. The power dissipated in the same
resistor when the current iq is direct is given by P =i R. Setting the two powers equal to

each other and solving, we obtain

I 260A

TR

56. (a) The power consumed by the light bulb is P = 1°R/2. So we must let Ppa/Pmin =
(/lmin)® = 5, or
2

L 2 — 8m /Zmin i _ Zmax i _ RZ +(a)LmaX)2 -5
Imin gm /Zmax Zmin R .

We solve for Liyax:

=184A.
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2
LR 2(120V)° /2000W __ L
® 21(60.0Hz)

(b) Yes, one could use a variable resistor.

2
[Rmax—i_Rbule =5
Rbulb

120V)’
Roae = (V5 —1)Ryyy = (v5-1) (1ooov2/ =178 Q.

(c) Now we must let

or

(d) This is not done because the resistors would consume, rather than temporarily store,
electromagnetic energy.

57. We shall use
&R &R

22" 2[R +(o,L-VaC) |

where Z = \/RZ +(wy,L-1/ 0,C)" is the impedance.

(@) Considered as a function of C, Pag has its largest value when the factor
R2+(a)dL—1/a)dC)2 has the smallest possible value. This occurs for o,L =1/ ®,C, or

c-t 1 ~117x10° F.
oyl (2m)°(60.0Hz)"(60.0x107° H)

The circuit is then at resonance.

(b) In this case, we want Z> to be as large as possible. The impedance becomes large
without bound as C becomes very small. Thus, the smallest average power occurs for C =
0 (which is not very different from a simple open switch).

(c) When ayL = 1/a@4C, the expression for the average power becomes

2
m

-
Il

so the maximum average power is in the resonant case and is equal to
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2
Pg _B00V) _g00w,
2(5.000)

(d) At maximum power, the reactances are equal: X, = Xc. The phase angle ¢ in this case
may be found from
XC

X, —
tang=—-—5=0,
/ R
which implies ¢ = 0°.
(e) At maximum power, the power factor is cos ¢ = cos 0° = 1.

(f) The minimum average power is Payq = 0 (as it would be for an open switch).

(9) On the other hand, at minimum power Xc oc 1/C is infinite, which leads us to set
tan ¢ = —oo . In this case, we conclude that ¢ =-90°.

(h) At minimum power, the power factor is cos ¢ = cos(-90°) = 0.

58. This circuit contains no reactances, S0 &ms = lmsRiota- Using Eq. 31-71, we find the
average dissipated power in resistor R is

2
PR:IfmSR:( Em ) R.
r+R

In order to maximize Pg we set the derivative equal to zero:

dPR_g;[(r+R)2—2(r+R)R}_g;(r_R)_o .
dR (r+R)’ ~ (r+R) -

59. (a) The rms current is

& &

2 [Re+(2nf-1/271C)
75.0V

rms

\/(15.09)2 +{27z(550Hz)(25.0mH)—1/[27z(550Hz)(4.70yF)]}2
=2.59A.

(b) The rms voltage across R is

V,, =1..R=(259A)(15.0Q)=38.8V.
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(c) The phase constant is related to the reactance difference by tan ¢ = (X, — Xc)/R. We
have
tan ¢ = tan(- 42.0°) = -0.900,

a negative number. Therefore, X, — X¢ is negative, which leads to X¢c > X.. The circuit in
the box is predominantly capacitive.

(d) If the circuit were in resonance X_ would be the same as Xc, tan ¢ would be zero, and
¢ would be zero. Since ¢ is not zero, we conclude the circuit is not in resonance.

(e) Since tan ¢ is negative and finite, neither the capacitive reactance nor the resistance
are zero. This means the box must contain a capacitor and a resistor.

(f) The inductive reactance may be zero, so there need not be an inductor.
(9) Yes, there is a resistor.

(h) The average power is

P = %gm | cos¢ = %(75.0 V)(L20A)(0.743) = 334 W.

a

(i) The answers above depend on the frequency only through the phase constant ¢, which
is given. If values were given for R, L and C then the value of the frequency would also
be needed to compute the power factor.

62. We use Eq. 31-79 to find

V, =V N, :(100v)(@)=1.00x103v.
"IN 50

p

63. (a) The stepped-down voltage is

v, =V, | s |~ (120v) (ﬂj:uv.
N 500

p

(b) By Ohm’s law, the current in the secondary is | = % = 21:—;2/ =016A.

S

We find the primary current from Eq. 31-80:

I, =1, N, |- (0.16A)(£) =32x10°A.
N 500

p
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(c) As shown above, the current in the secondary is I, =0.16A.

64. For step-up transformer:

() The smallest value of the ratio V, /V is achieved by using T,Ts as primary and T1Ts as
secondary coil: Vi3/V,3 = (800 + 200)/800 = 1.25.

(b) The second smallest value of the ratio V, /V  is achieved by using T;T as primary and
T, T3 as secondary coil: V,3/V13 = 800/200 = 4.00.

(c) The largest value of the ratio V, /V is achieved by using T;T as primary and T;Ts as
secondary coil: Vi3/V12 = (800 + 200)/200 = 5.00.

For the step-down transformer, we simply exchange the primary and secondary coils in
each of the three cases above.

(d) The smallest value of the ratio V, /V is 1/5.00 = 0.200.
(e) The second smallest value of the ratio V, /V/ is 1/4.00 = 0.250.

(f) The largest value of the ratio V, /V/ is 1/1.25 = 0.800.

65. (a) The rms current in the cable is 1, = P/V, = 250x10°W/(80x 10° V) = 3125A.
Therefore, the rms voltage drop is AV =1, R =(3125A)(2)(0.30Q)=19V.

(b) The rate of energy dissipation is P, = 12 R =(3125A)(2)(0.60Q) =59 W.

(c) Now I, =250x10°W/(8.0x10°V)=3125A , so AV =(31.25A)(0.60Q)=19V.
(d) P, = (3125A)°(0.6002) =59 x 10* W.

(&) | s = 250x10° W/(0.80x10° V) =3125 A, s0 AV =(3125A)(0.60Q) =1.9x10° V.
(f)P, =(312.5A)° (0.60 Q) =5.9x10* W.

66. (a) The amplifier is connected across the primary windings of a transformer and the
resistor R is connected across the secondary windings.
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X, 1.30x10°Q

= = =4.60x10%Hz.
27L 27[(45.0><10’3H)

(b) The capacitance is found from Xc = (wC)™ = (2nfC)™:

1 1

- = — -8
2 X, a 277(4-60X103HZ)(1,30><103Q) =2.66x10"F.

(c) Noting that X_ oc f and Xc o f *, we conclude that when f is doubled, X, doubles and
Xc reduces by half. Thus,

X, =2(1.30 x 10° Q) =2.60 x 10° Q..
(d) Xc = 1.30 x 10% /2 = 6.50 x 10° Q.
71. (a) The impedance is Z =(80.0 V)/(1.25 A) = 64.0 Q.
(b) We can write cos ¢ = R/Z. Therefore,

R = (64.0 ©)cos(0.650 rad) =50.9 Q.
(c) Since the current leads the emf, the circuit is capacitive.

72. (a) From Eq. 31-65, we have

9= tan-l(u] = tan—l(w]
Vi (v, /2.00)

which becomes tan™ (2/3 ) = 33.7° or 0.588 rad.
(b) Since ¢ > 0, it is inductive (X_ > Xc).

(c) We have Vg = IR =9.98 V, so that V| = 2.00Vg = 20.0 V and V¢ =V /1.50 = 13.3 V.
Therefore, from Eq. 31-60, we have

gn = V2 +(V —Ve)? =/(9.98V)* +(20.0V-13.3V)* =120V

73. (a) From Eq. 31-4, we have L = (&°C) ™ = ((24£)°C) ™ = 2.41 1H.

(b) The total energy is the maximum energy on either device (see Fig. 31-4). Thus, we
have Upax =3 LI% = 21.4 pJ.



