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Chapter 30 
 
 
1. The flux ΦB BA= cosθ  does not change as the loop is rotated. Faraday’s law only 
leads to a nonzero induced emf when the flux is changing, so the result in this instance is 
zero. 
 
2. Using Faraday’s law, the induced emf is 
 

( ) ( )

( )( )( )

2

2

2 0.12m 0.800T 0.750m/s
0.452V.

B
d rd BAd dA drB B rB

dt dt dt dt dt
π

ε π

π

Φ
= − = − = − = − = −

= − −

=

 

 
3. The total induced emf is given by  
 

( )

2
0 0 0

2

( ) ( )

1.5 A(120)(4 T m A)(22000/m) 0.016m
0.025 s

0.16V.

Bd dB d di diN NA NA ni N nA N n r
dt dt dt dt dt

ε μ μ μ πΦ ⎛ ⎞= − = − = − = − = −⎜ ⎟
⎝ ⎠

⎛ ⎞= − × ⋅ ⎜ ⎟
⎝ ⎠

=

-7p 10 p  

 
Ohm’s law then yields | | / 0.016 V / 5.3 0.030 Ai Rε= = Ω = . 
 
4. (a) We use ε = –dΦB/dt = –πr2dB/dt. For 0 < t < 2.0 s: 
 

( )22 20.5T0.12m 1.1 10 V.
2.0s

dBr
dt

ε −⎛ ⎞
= − = − = − ×⎜ ⎟

⎝ ⎠
p p  

 
(b) For 2.0 s < t < 4.0 s: ε ∝ dB/dt = 0. 
 
(c) For 4.0 s < t < 6.0 s: 
 

ε = − = −
−

−
F
HG

I
KJ = × −p pr dB

dt
2 2 2012 05

6 0 4 0
11 10. .

. .
. .m T

s s
Vb g  

 
5. The field (due to the current in the straight wire) is out of the page in the upper half of 
the circle and is into the page in the lower half of the circle, producing zero net flux, at 
any time. There is no induced current in the circle. 
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6. From the datum at t = 0 in Fig. 30-35(b) we see 0.0015 A = Vbattery /R, which implies 
that the resistance is  

R = (6.00 μV)/(0.0015 A) = 0.0040 Ω. 
 
Now, the value of the current during 10 s < t < 20 s  leads us to equate 
  

(Vbattery + ε induced)/R = 0.00050 A. 
 
This shows that the induced emf is ε induced = −4.0 μV.  Now we use Faraday’s law: 
 

ε = − 
dΦB
dt  =  −A 

dB
dt  = −A a . 

 
Plugging in ε = − 4.0 ×10−6 V and A = 5.0 × 10−4 m2, we obtain a = 0.0080 T/s. 
 
7. (a)  The magnitude of the emf is 
 

ε = = + = + = + =
d
dt

d
dt

t t tBΦ 6 0 7 0 12 7 0 12 2 0 7 0 312. . . . .c h b g mV.  

 
(b) Appealing to Lenz’s law (especially Fig. 30-5(a)) we see that the current flow in the 
loop is clockwise. Thus, the current is to the left through R. 
 
8. The resistance of the loop is 
 

( ) ( )
( )

8 3
2

m
1.69 10 m 1.1 10 .

 m / 4

LR
A

π
ρ

π
− −

−3

0.10
= = × Ω⋅ = × Ω

2.5×10
 

 
We use i = |ε|/R = |dΦB/dt|/R = (πr2/R)|dB/dt|. Thus 
 

( )( )
( )

3

22

10A 1.1 10
1.4 T s.

m
dB iR
dt rπ π

−× Ω
= = =

0.05
 

 
9. The amplitude of the induced emf in the loop is 
 

6 2
0 0

4

(6.8 10 m )(4 T m A)(85400 / m)(1.28 A)(212 rad/s)

1.98 10 V.
m A niε μ ω −

−

= = × × ⋅

= ×

-7p 10  

 
10. (a) The magnetic flux ΦB  through the loop is given by  
 

( )( )22 2 cos 45B B rΦ = π ° = 2 2r Bπ . 
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Thus, 

( )222 2 3

3

2

3.7 10 m 0 76 10 T
4.5 10 s2 2 2

5.1 10 V.

Bd d r B r B
dt dt t

ππ πε
− −

−

−

×⎛ ⎞ ⎛ ⎞Φ Δ − ×⎛ ⎞= − = − = − = −⎜ ⎟ ⎜ ⎟⎜ ⎟Δ ×⎝ ⎠⎝ ⎠ ⎝ ⎠
= ×

 

 
(a) The direction of the induced current is clockwise when viewed along the direction of 
B . 
 
11. (a) It should be emphasized that the result, given in terms of sin(2π ft), could as easily 
be given in terms of cos(2πft) or even cos(2πft + φ) where φ is a phase constant as 
discussed in Chapter 15. The angular position θ of the rotating coil is measured from 
some reference line (or plane), and which line one chooses will affect whether the 
magnetic flux should be written as BA cosθ, BA sinθ or BA cos(θ + φ). Here our choice is 
such that ΦB BA= cosθ . Since the coil is rotating steadily, θ increases linearly with time. 
Thus, θ = ωt (equivalent to θ = 2πft) if θ is understood to be in radians (and ω would be 
the angular velocity). Since the area of the rectangular coil is A=ab, Faraday’s law leads 
to  

( ) ( ) ( )cos cos 2
2 sin 2

d BA d ft
N NBA N Bab f ft

dt dt
θ π

ε π π= − = − =  

 
which is the desired result, shown in the problem statement. The second way this is 
written (ε0 sin(2π ft)) is meant to emphasize that the voltage output is sinusoidal (in its 
time dependence) and has an amplitude of ε0 = 2πf NabB. 
 
(b) We solve  

ε0 = 150 V = 2π f NabB 
 
when f = 60.0 rev/s and B = 0.500 T. The three unknowns are N, a, and b which occur in 
a product; thus, we obtain Nab = 0.796 m2.  
 
12. To have an induced emf, the magnetic field must be perpendicular (or have a nonzero 
component perpendicular) to the coil, and must be changing with time.   
 
(a) For 2 ˆ(4.00 10 T/m) kB y−= × , / 0dB dt =  and hence ε = 0. 
 
(b) None. 
 
(c) For 2 ˆ(6.00 10 T/s) kB t−= × ,  
 

ε = − 
dΦB
dt   =  −A 

dB
dt  =  −(0.400 m × 0.250 m)(0.0600 T/s) = −6.00 mV, 

 
or |ε| = 6.00 mV. 



CHAPTER 30 1168 

 
(d) Clockwise. 
 
(e) For 2 ˆ(8.00 10 T/m s) kB yt−= × ⋅ ,  
 

ΦB = (0.400)(0.0800t) ydy∫  = 31.00 10 t−× , 
 
in SI units. The induced emf is / 1.00 mV,d B dtε = − Φ = − or |ε| = 1.00 mV. 
 
(f) Clockwise. 
 
(g) 0    0B εΦ = ⇒ = . 
 
(h) None. 
 
(i) 0    0B εΦ = ⇒ = . 
 
(j) None. 
 
13. The amount of charge is 
 

3 2

2

1 1.20 10 m( ) [ (0) ( )] [ (0) ( )] [1.60T ( 1.60T)]
13.0

2.95 10 C .

B B
Aq t t B B t

R R

−

−

×
= Φ − Φ = − = − −

Ω

= ×

 

 
14. Figure 30-40(b) demonstrates that /dB dt  (the slope of that line) is 0.003 T/s.  Thus, 
in absolute value, Faraday’s law becomes 
 

 ( )Bd d BA dBA
dt dt dt

ε Φ
= − = − = −  

 
where A = 8 ×10−4 m2.  We related the induced emf to resistance and current using Ohm’s 
law.  The current is estimated from Fig. 30-40(c) to be i = /dq dt =  0.002 A (the slope of 
that line).  Therefore, the resistance of the loop is 
 

 
4 2| | | / | (8.0 10  m )(0.0030 T/s) 0.0012
0.0020 A

A dB dtR
i i
ε −×

= = = = Ω . 

 
15. (a) Let L be the length of a side of the square circuit. Then the magnetic flux through 
the circuit is ΦB L B= 2 2/ , and the induced emf is 
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2

.
2

B
i

d L dB
dt dt

ε Φ
= − = −  

 
Now B = 0.042 – 0.870t and dB/dt = –0.870 T/s. Thus, 
 

ε i =
( . ( . /2 00

2
0870m) T s) = 1.74 V.

2

 

 
The magnetic field is out of the page and decreasing so the induced emf is 
counterclockwise around the circuit, in the same direction as the emf of the battery. The 
total emf is  

ε + εi = 20.0 V + 1.74 V = 21.7 V. 
 
(b) The current is in the sense of the total emf (counterclockwise). 
 
16. (a) Since the flux arises from a dot product of vectors, the result of one sign for B1 
and B2 and of the opposite sign for B3 (we choose the minus sign for the flux from B1 and 
B2, and therefore a plus sign for the flux from B3).  The induced emf is 
 

ε =  −Σ 
dΦB
dt   =  A ⎝⎜

⎛
⎠⎟
⎞dB1

dt   +  
dB2
dt  −  

dB3
dt  

=(0.10 m)(0.20 m)(2.0 × 10−6 T/s  + 1.0 ×10−6 T/s −5.0×10−6 T/s) 
= −4.0×10−8 V. 

 
The minus sign means that the effect is dominated by the changes in B3. Its magnitude 
(using Ohm’s law) is |ε| /R = 8.0 μA.  
 
(b) Consideration of Lenz’s law leads to the conclusion that the induced current is 
therefore counterclockwise.   
 
17. Equation 29-10 gives the field at the center of the large loop with R = 1.00 m and 
current i(t). This is approximately the field throughout the area (A = 2.00 × 10–4 m2) 
enclosed by the small loop. Thus, with B = μ0i/2R and i(t) = i0 + kt, where i0 = 200 A and  
 

k = (–200 A – 200 A)/1.00 s = – 400 A/s, 
we find 
 

(a) 
( )( )

( )

7
40 0

4 10 H/m 200A
( 0) 1.26 10 T,

2 2 1.00m
iB t
R

μ
−

−
π×

= = = = ×  

 

(b) 
( ) ( )( )

( )

74 10 H/m 200A 400A/s 0.500s
( 0.500s) 0,

2 1.00m
B t

−π× −⎡ ⎤⎣ ⎦= = = and 
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be in radians (here, ω = 2πf is the angular velocity of the coil in radians per second, and f 
= 1000 rev/min ≈ 16.7 rev/s is the frequency). Since the area of the rectangular coil is A = 
(0.500 m) × (0.300 m) = 0.150 m2, Faraday’s law leads to 
 

ε
θ

= − = − =N
d BA

dt
NBA

d ft
dt

NBA f ft
cos cos

sinb g b g b g2
2 2

π
π π  

 
which means it has a voltage amplitude of 
 

( )( )( )( )2 3
max 2 2 16.7 rev s 100 turns 0.15m 3.5T 5.50 10 V .fNABε π π= = = ×  

 
20. We note that 1 gauss = 10–4 T. The amount of charge is 
 

4 2
5

2 cos 20( ) [ cos 20 ( cos 20 )]

2(1000)(0.590 10 T) (0.100m) (cos 20 ) 1.55 10 C .
85.0 140

N NBAq t BA BA
R R

−
−

°
= ° − − ° =

× π °
= = ×

Ω + Ω

 

 
Note that the axis of the coil is at 20°, not 70°, from the magnetic field of the Earth. 
 
21. (a) The frequency is 
 

 (40 rev/s)(2  rad/rev) 40 Hz
2 2

f ω π
π π

= = = . 

 
(b) First, we define angle relative to the plane of Fig. 30-44, such that the semicircular 
wire is in the θ = 0 position and a quarter of a period (of revolution) later it will be in the 
θ = π/2 position (where its midpoint will reach a distance of a above the plane of the 
figure). At the moment it is in the θ = π/2 position, the area enclosed by the “circuit” will 
appear to us (as we look down at the figure) to that of a simple rectangle (call this area A0, 
which is the area it will again appear to enclose when the wire is in the θ = 3π/2 position). 
Since the area of the semicircle is πa2/2, then the area (as it appears to us) enclosed by the 
circuit, as a function of our angle θ, is 
 

A A a
= +0

2

2
π cosθ  

 
where (since θ is increasing at a steady rate) the angle depends linearly on time, which 
we can write either as θ = ωt or θ = 2πft if we take t = 0 to be a moment when the arc is 
in the θ = 0 position. Since B  is uniform (in space) and constant (in time), Faraday’s law 
leads to 
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( )2 2 3

0
4 2 .B Bd t y dy tΦ = Φ = =∫ ∫  

 
Thus, Faraday’s law yields 

ε = =
d
dt

tBΦ 4 3 .  

 
At t = 2.5 s, the magnitude of the induced emf is 8.0 × 10–5 V.  
 
(b) Its “direction” (or “sense’’) is clockwise, by Lenz’s law. 
 
28. (a) We assume the flux is entirely due to the field generated by the long straight wire 
(which is given by Eq. 29-17). We integrate according to Eq. 30-1, not worrying about 
the possibility of an overall minus sign since we are asked to find the absolute value of 
the flux. 

/ 2 0 0
/ 2

/ 2| | ( ) ln .
2 2 / 2

r b

B r b

i ia r ba dr
r r b

μ μ
π π

+

−

+⎛ ⎞ ⎛ ⎞Φ = = ⎜ ⎟⎜ ⎟ −⎝ ⎠⎝ ⎠∫  

 
When 1.5r b= , we have  
 

 8(4 T m A)(4.7A)(0.022m)| | ln(2.0) 1.4 10 Wb.
2B π

−× ⋅
Φ = = ×

-7p 10  

 
(b) Implementing Faraday’s law involves taking a derivative of the flux in part (a), and 
recognizing that /dr dt v= . The magnitude of the induced emf divided by the loop 
resistance then gives the induced current: 
 

0 0
loop 2 2

3

4 2

5

/ 2ln
2 / 2 2 [ ( / 2) ]

(4 T m A)(4.7A)(0.022m)(0.0080m)(3.2 10 m/s)
2 (4.0 10 )[2(0.0080m) ]

1.0 10 A.

ia iabvd r bi
R R dt r b R r b

μ με
π π

π
π

−

−

−

+⎛ ⎞= = − =⎜ ⎟− −⎝ ⎠

× ⋅ ×
=

× Ω

= ×

−710  

 
29. (a) Equation 30-8 leads to 
 

ε = = =BLv ( . .0 350 0 0481T)(0.250 m)(0.55 m / s) V . 
 
(b) By Ohm’s law, the induced current is  
 

i = 0.0481 V/18.0 Ω = 0.00267 A. 
 
By Lenz’s law, the current is clockwise in Fig. 30-50. 
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(c) Equation 26-27 leads to P = i2R = 0.000129 W. 
 
30. Equation 26-28 gives ε2/R as the rate of energy transfer into thermal forms (dEth /dt, 
which, from Fig. 30-51(c), is roughly 40 nJ/s).  Interpreting ε as the induced emf (in 
absolute value) in the single-turn loop (N = 1) from Faraday’s law, we have 
 

 ( )Bd d BA dBA
dt dt dt

ε Φ
= = = . 

 
Equation 29-23 gives B = μoni for the solenoid (and note that the field is zero outside of 
the solenoid, which implies that A = Acoil), so our expression for the magnitude of the 
induced emf becomes 

( ) coil
coil 0 coil 0 coil

didB dA A ni nA
dt dt dt

ε μ μ= = = . 

 
where Fig. 30-51(b) suggests that dicoil/dt = 0.5 A/s. With n = 8000 (in SI units) and Acoil 
= π(0.02)2  (note that the loop radius does not come into the computations of this problem, 
just the coil’s), we find V = 6.3 μV. Returning to our earlier observations, we can now 
solve for the resistance:  

R = ε 2/(dEth /dt) = 1.0 mΩ. 
 
31. Thermal energy is generated at the rate P = ε2/R (see Eq. 26-28). Using Eq. 27-16, the 
resistance is given by R = ρL/A, where the resistivity is 1.69 × 10–8 Ω·m (by Table 27-1) 
and A = πd2/4 is the cross-sectional area of the wire (d = 0.00100 m is the wire thickness). 
The area enclosed by the loop is 

A r L
loop loop

2= = FHG
I
KJπ π

π2

2

 

 
since the length of the wire (L = 0.500 m) is the circumference of the loop. This enclosed 
area is used in Faraday’s law (where we ignore minus signs in the interest of finding the 
magnitudes of the quantities): 

ε = = =
d
dt

A dB
dt

L dB
dt

BΦ
loop

2

4π
 

 
where the rate of change of the field is dB/dt = 0.0100 T/s. Consequently, we obtain 
 

( )
22 2 2 2 2 3 3 2 3

2
2 8

6

( / 4 ) ( / ) (1.00 10  m) (0.500 m) 0.0100 T/s
/( / 4) 64 64 (1.69 10 m)

3.68 10 W .

L dB dt d L dBP
R L d dt
ε π

ρ π πρ π

−

−

−

×⎛ ⎞= = = =⎜ ⎟ × Ω ⋅⎝ ⎠
= ×

 

 
32. Noting that |ΔB| = B, we find the thermal energy is 
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38. From the “kink” in the graph of Fig. 30-55, we conclude that the radius of the circular 
region is 2.0 cm.  For values of r less than that, we have (from the absolute value of Eq. 
30-20) 

2( )(2 ) Bd d BA dBE r A r a
dt dt dt

π πΦ
= = = =  

 
which means that E/r = a/2.  This corresponds to the slope of that graph (the linear 
portion for small values of r) which we estimate to be 0.015 (in SI units). Thus, 

0.030 T/s.a =  
 
39. The magnetic field B can be expressed as 
 

B t B B tb g b g= + +0 1 0sin ,ω φ  
 
where B0 = (30.0 T + 29.6 T)/2 = 29.8 T and B1 = (30.0 T – 29.6 T)/2 = 0.200 T. Then 
from Eq. 30-25 
 

E dB
dt

r r d
dt

B B t B r t= FHG
I
KJ = + + = +

1
2 2

1
20 1 0 1 0sin cos .ω φ ω ω φb g b g  

 
We note that ω = 2πf and that the factor in front of the cosine is the maximum value of 
the field. Consequently, 
 

( ) ( )( )( )( )2
max 1

1 12 0.200T 2 15 Hz 1.6 10 m 0.15 V/m.
2 2

E B f rπ π −= = × =  

 
40. Since NΦB = Li, we obtain 
 

ΦB
Li
N

= =
× ×

= ×
− −

−
8 0 10 50 10

400
10 10

3 3
7

. .
.

H A
Wb.

c hc h
 

 
41. (a) We interpret the question as asking for N multiplied by the flux through one turn: 
 

Φ Φturns T m Wb.= = = = × = ×− −N NBA NB rB π π2 3 2 330 0 2 60 10 0100 2 45 10c h b gc hb gb g. . . .  
 
(b) Equation 30-33 leads to 

L N
i

B= =
×

= ×
−

−Φ 2 45 10
380

6 45 10
3

4.
.

. Wb
A

H.  

 
42. (a) We imagine dividing the one-turn solenoid into N small circular loops placed 
along the width W of the copper strip. Each loop carries a current Δi = i/N. Then the 
magnetic field inside the solenoid is  
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or | / | 5.0A/s.di dt =  We might, for example, uniformly reduce the current from 2.0 A to 
zero in 40 ms. 
 
45. (a) Speaking anthropomorphically, the coil wants to fight the changes—so if it wants 
to push current rightward (when the current is already going rightward) then i must be in 
the process of decreasing. 
 
(b) From Eq. 30-35 (in absolute value) we get 
 

L
di dt

= = = × −ε
/

.17 6 8 10 4V
2.5kA / s

H. 

 
46. During periods of time when the current is varying linearly with time, Eq. 30-35 (in 
absolute values) becomes | | | / | .L i tε = Δ Δ  For simplicity, we omit the absolute value 
signs in the following. 
 
(a) For 0 < t < 2 ms, 

ε = =
−

×
= ×−L i

t
Δ
Δ

4 6 7 0 0
2 0 10

16 103
4. .

.
.

H A
s

V.b gb g  

 
(b) For 2 ms < t < 5 ms, 

ε = =
−

−
= ×−L i

t
Δ
Δ

4 6 50 7 0
50 2 0 10

31 103
3. . .

. .
.

H A A
s

V.b gb g
b g  

 
(c) For 5 ms < t < 6 ms, 

ε = =
−

−
= ×−L i

t
Δ
Δ

4 6 0 50
6 0 50 10

2 3 103
4. .

. .
.

H A
s

V.b gb g
b g  

 
47. (a) Voltage is proportional to inductance (by Eq. 30-35) just as, for resistors, it is 
proportional to resistance. Since the (independent) voltages for series elements add (V1 + 
V2), then inductances in series must add, eq 1 2L L L= + , just as was the case for resistances. 
Note that to ensure the independence of the voltage values, it is important that the 
inductors not be too close together (the related topic of mutual inductance is treated in 
Section 30-12). The requirement is that magnetic field lines from one inductor should not 
have significant presence in any other. 
 
(b) Just as with resistors, L Lnn

N
eq =

=∑ .
1

 
 
48. (a) Voltage is proportional to inductance (by Eq. 30-35) just as, for resistors, it is 
proportional to resistance. Now, the (independent) voltages for parallel elements are 
equal (V1 = V2), and the currents (which are generally functions of time) add (i1 (t) + i2 (t) 
= i(t)). This leads to the Eq. 27-21 for resistors. We note that this condition on the 
currents implies 
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di t
dt

di t
dt

di t
dt

1 2b g b g b g
+ = .  

 
Thus, although the inductance equation Eq. 30-35 involves the rate of change of current, 
as opposed to current itself, the conditions that led to the parallel resistor formula also 
apply to inductors. Therefore, 

1 1 1

1 2L L Leq

= + .  

 
Note that to ensure the independence of the voltage values, it is important that the 
inductors not be too close together (the related topic of mutual inductance is treated in 
Section 30-12). The requirement is that the field of one inductor not to have significant 
influence (or “coupling’’) in the next. 
 

(b) Just as with resistors, 
1eq

1 1N

n nL L=

= ∑ . 

 
49. Using the results from Problems 30-47 and 30-48, the equivalent resistance is 
 

 
2 3

eq 1 4 23 1 4
2 3

(50.0 mH)(20.0 mH)30.0 mH 15.0 mH
50.0 mH 20.0 mH

59.3 mH.

L LL L L L L L
L L

= + + = + + = + +
+ +

=

 

 
50. The steady state value of the current is also its maximum value, ε/R, which we denote 
as im. We are told that i = im/3 at t0 = 5.00 s. Equation 30-41 becomes ( )0 /1 ,Lt

mi i e τ−= −  
which leads to 

τ L
m

t
i i

= −
−

= −
−

=0

1
5 00

1 3
12 3

ln /
.

/
.b g b g

s
ln 1

s.  

 
51. The current in the circuit is given by 0

Lti i e τ−= , where i0 is the current at time t = 0 
and τL is the inductive time constant (L/R). We solve for τL. Dividing by i0 and taking the 
natural logarithm of both sides, we obtain 
 

ln .i
i

t

L0

F
HG
I
KJ = −

τ
 

This yields 

τ L
t
i i

= − = −
×

=
−ln /
.

ln / .
.

0
3

10
10 10 10

0 217b g c h b ge j
s
A A

s. 

 
Therefore, R = L/τL = 10 H/0.217 s = 46 Ω. 
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52. (a) Immediately after the switch is closed, ε – εL = iR. But i = 0 at this instant, so εL = 
ε, or εL/ε = 1.00. 
 
(b) 2.0 2.0( ) 0.135 ,L L Lt

L t e e eτ τ τε ε ε ε ε− − −= = = =  or εL/ε = 0.135. 
 
(c) From ( ) Lt

L t e τε ε −=  we obtain 
 

ln ln 2 ln 2 0.693       / 0.693.L L L
L L

t t tε τ τ τ
τ ε

⎛ ⎞
= = ⇒ = = ⇒ =⎜ ⎟

⎝ ⎠
 

 
53. (a) If the battery is switched into the circuit at t = 0, then the current at a later time t is 
given by 

i
R

e t L= − −ε τ1 / ,c h  

 
where τL = L/R. Our goal is to find the time at which i = 0.800ε/R. This means 
 

/ /0.800 1 0.200 .L Lt te eτ τ− −= − ⇒ =  
 
Taking the natural logarithm of both sides, we obtain –(t/τL) = ln(0.200) = –1.609. Thus, 
 

t L
RL= = =

×
×

= ×
−

−1609 1609 1609 6 30 10
120 10

8 45 10
6

3
9. . . ( .

.
.τ H) s .

Ω
 

 
(b) At t = 1.0τL the current in the circuit is 
 

( )1.0 1.0 3
3

14.0V1 (1 ) 7.37 10 A .
1.20 10

i e e
R
ε − − −⎛ ⎞= − = − = ×⎜ ⎟× Ω⎝ ⎠

 

 
The current as a function of / Lt τ  is plotted below. 
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i
R

e t L= − −ε τ1 / ,c h  

 
where τL = L/R is the inductive time constant and ε is the battery emf. To calculate the 
time at which i = 0.9990ε/R, we solve for t: 
 

( ) ( ) ( )/0.990 1 ln 0.0010 /     / 6.91.Lt
Le t t

R R
τε ε τ τ−= − ⇒ = − ⇒ =  

 
The current (in terms of 0/i i ) as a function of / Lt τ  is plotted below. 
 

 
 
56. From the graph we get Φ/i = 2 ×10−4 in SI units.  Therefore, with N = 25, we find the 
self-inductance is L = N Φ/i  = 5 × 10−3 H.  From the derivative of Eq. 30-41 (or a 
combination of that equation and Eq. 30-39) we find (using the symbol V to stand for the 
battery emf) 

di
dt

 = V
R

R
L  e−t/τL = V

L
e−t/τL = 7.1 × 102 A/s . 

 
57. (a) Before the fuse blows, the current through the resistor remains zero. We apply the 
loop theorem to the battery-fuse-inductor loop: ε – L di/dt = 0. So i = εt/L. As the fuse 
blows at t = t0, i = i0 = 3.0 A. Thus, 
 

( )( )0
0

3.0A 5.0H
1.5 s.

10V
i Lt
ε

= = =  

 
(b) We do not show the graph here; qualitatively, it would be similar to Fig. 30-15. 
 
58. Applying the loop theorem, 

ε − FHG
I
KJ =L di

dt
iR ,  

 
we solve for the (time-dependent) emf, with SI units understood: 
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τL = t/0.5108 = (5.00 × 10–3 s)/0.5108 = 9.79 × 10–3 s 

 
and the inductance is 
 

L RL= = × × =−τ 9 79 10 10 0 10 97 93 3. . .s H .c hc hΩ  
 
(b) The energy stored in the coil is 
 

U LiB = = × = ×− −1
2

1
2

97 9 2 00 10 196 102 3 2 4. . .H A J .b gc h  

 
62. (a) From Eq. 30-49 and Eq. 30-41, the rate at which the energy is being stored in the 
inductor is 
 

( ) ( ) ( )
21 2

2 11 1 .L L L Lt t t tB

L

d LidU diLi L e e e e
dt dt dt R R R

τ τ τ τε ε ε
τ

− − − −⎛ ⎞⎛ ⎞= = = − = −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

Now,  
τL = L/R = 2.0 H/10 Ω = 0.20 s 

 
and ε = 100 V, so the above expression yields dUB/dt = 2.4 × 102 W when t = 0.10 s. 
 
(b) From Eq. 26-22 and Eq. 30-41, the rate at which the resistor is generating thermal 
energy is 

P i R
R

e R
R

et tL L
thermal = = − = −− −2

2

2

2 2 2
1 1ε ετ τc h c h .  

 
At t = 0.10 s, this yields Pthermal = 1.5 × 102 W. 
 
(c) By energy conservation, the rate of energy being supplied to the circuit by the battery 
is 

P P dU
dt

B
battery thermal W.= + = ×39 102.  

 
We note that this result could alternatively have been found from Eq. 28-14 (with Eq. 30-
41). 
 
63. From Eq. 30-49 and Eq. 30-41, the rate at which the energy is being stored in the 
inductor is 
 

( ) ( ) ( )
2 2/ 2 11 1L L L Lt t t tB

L

d LidU diLi L e e e e
dt dt dt R R R

τ τ τ τε ε ε
τ

− − − −⎛ ⎞⎛ ⎞= = = − = −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
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where τL = L/R has been used. From Eq. 26-22 and Eq. 30-41, the rate at which the 
resistor is generating thermal energy is 
 

P i R
R

e R
R

et tL L
thermal = = − = −− −2

2

2

2 2 2
1 1ε ετ τc h c h .  

 
We equate this to dUB/dt, and solve for the time: 
 

( ) ( ) ( )
2 22

1 1 ln 2 37.0ms ln 2 25.6ms.L L Lt t t
Le e e t

R R
τ τ τε ε τ− − −− = − ⇒ = = =  

 
64. Let U t Li tB b g b g= 1

2
2 . We require the energy at time t to be half of its final value: 

U t U t LiB fb g b g= → ∞ =1
2

1
4

2 . This gives i t i fb g = 2 . But /( ) (1 )Lt
fi t i e τ−= − , so 

 
1 11       ln 1 1.23.
2 2

Lt

L

te τ

τ
− ⎛ ⎞− = ⇒ = − − =⎜ ⎟

⎝ ⎠
 

 
65. (a) The energy delivered by the battery is the integral of Eq. 28-14 (where we use Eq. 
30-41 for the current): 
 

( ) ( )

( ) ( ) ( )( )( )

2 2  

battery 0  0

6.70 2.00 s 5.50 H2

1 1

5.50 H 110.0 V
2.00 s

6.70 6.70

18.7 J.

t t Rt L Rt LLP dt e dt t e
R R R

e

ε ε− −

− Ω

⎡ ⎤= − = + −⎢ ⎥⎣ ⎦
⎡ ⎤−
⎢ ⎥= +
⎢ ⎥Ω Ω
⎣ ⎦

=

∫ ∫

 

 
(b) The energy stored in the magnetic field is given by Eq. 30-49: 
 

( ) ( ) ( ) ( )( )
22

22 6.70 2.00 s 5.50 H21 1 1 10.0V1 5.50H 1
2 2 2 6.70
5.10 J .

Rt L
BU Li t L e e

R
ε − Ω− ⎛ ⎞⎛ ⎞ ⎡ ⎤= = − = −⎜ ⎟⎜ ⎟ ⎣ ⎦Ω⎝ ⎠ ⎝ ⎠

=

 

 
(c) The difference of the previous two results gives the amount “lost” in the resistor:  
18.7 J – 5.10 J = 13.6 J. 
 
66. (a) The magnitude of the magnetic field at the center of the loop, using Eq. 29-9, is 
 

( )( )
( )

7
30

3

4 10 H m 100A
1.3 10 T .

2 2 50 10 m
iB

R
πμ

−
−

−

×
= = = ×

×
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 ( )( )1
21

2

3.0mH 6.0mA
90nWb

200
Mi
N

Φ = = = . 

 
(d) The mutually induced emf is 
 

( )( )1
21 3.0mH 4.0 A s 12mV.diM

dt
ε = = =  

 
73. (a) Equation 30-65 yields 

M
di dt

= = =
ε1

2

25 0
15 0

167.
.

. .mV
A s

mH  

(b) Equation 30-60 leads to 
 

N Mi2 21 1 167 360 6 00Φ = = =. . . .mH A mWbb gb g  
 
74. We use ε2 = –M di1/dt ≈ M|Δi/Δt| to find M: 
 

M
i t

= =
×

×
=

−

ε
Δ Δ1

3

3

30 10
6 0

13V
A 2.5 10 s

H
.

.c h  

 
75. The flux over the loop cross section due to the current i in the wire is given by 
 

0 0
wire ln 1 .

2 2
a b a b

a a

il il bB ldr dr
r a

μ μ
π π

+ + ⎛ ⎞Φ = = = +⎜ ⎟
⎝ ⎠∫ ∫  

Thus, 

M N
i

N l b
a

= = +FHG
I
KJ

Φ μ 0

2
1

π
ln .  

 
From the formula for M obtained above, we have 
 

( )( )( )7
5

100 4 10 H m 0.30 m 8.0ln 1 1.3 10 H .
2 1.0

M
π

π

−
−

× ⎛ ⎞= + = ×⎜ ⎟
⎝ ⎠

 

 
76. (a) The coil-solenoid mutual inductance is 
 

( )2
0 2

0 .scs
cs

s s

N i n RNM M R nN
i i

μ π
μ πΦ

= = = =  

 
(b) As long as the magnetic field of the solenoid is entirely contained within the cross 
section of the coil we have Φsc = BsAs = BsπR2, regardless of the shape, size, or possible 
lack of close-packing of the coil. 
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77. (a) We assume the current is changing at (nonzero) rate di/dt and calculate the total 
emf across both coils. First consider the coil 1. The magnetic field due to the current in 
that coil points to the right. The magnetic field due to the current in coil 2 also points to 
the right. When the current increases, both fields increase and both changes in flux 
contribute emf’s in the same direction. Thus, the induced emf’s are 
 

ε ε1 1 2 2= − + = − +L M di
dt

L M di
dt

b g b gand .  

 
Therefore, the total emf across both coils is 
 

ε ε ε= + = − + +1 2 1 2 2L L M di
dt

b g  

 
which is exactly the emf that would be produced if the coils were replaced by a single 
coil with inductance Leq = L1 + L2 + 2M. 
 
(b) We imagine reversing the leads of coil 2 so the current enters at the back of coil rather 
than the front (as pictured in the diagram). Then the field produced by coil 2 at the site of 
coil 1 is opposite to the field produced by coil 1 itself. The fluxes have opposite signs. An 
increasing current in coil 1 tends to increase the flux in that coil, but an increasing current 
in coil 2 tends to decrease it. The emf across coil 1 is 
 

ε1 1= − −L M di
dt

b g .  

Similarly, the emf across coil 2 is 
 

ε 2 2= − −L M di
dt

b g .  

The total emf across both coils is 
 

ε = − + −L L M di
dt1 2 2b g .  

 
This is the same as the emf that would be produced by a single coil with inductance  
 

Leq = L1 + L2 – 2M. 
 
78. Taking the derivative of Eq. 30-41, we have 
 

/ / /(1 )L L Lt t t

L

di d e e e
dt dt R R L

τ τ τε ε ε
τ

− − −⎡ ⎤= − = =⎢ ⎥⎣ ⎦
. 
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With τL = L/R (Eq. 30-42), L = 0.023 H and ε  = 12 V, t = 0.00015 s, and di/dt = 280 A/s, 
we obtain e− t/τL = 0.537.  Taking the natural log and rearranging leads to R = 95.4 Ω. 
 
79. (a) When switch S is just closed, V1 = ε and i1 = ε/R1 = 10 V/5.0 Ω = 2.0 A.  
 
(b) Since now εL = ε, we have i2 = 0. 
 
(c) is = i1 + i2 = 2.0 A + 0 = 2.0 A. 
 
(d) Since VL = ε, V2 = ε – εL = 0. 
 
(e) VL = ε = 10 V. 
 

(f) 2 10 V 2.0 A/s
5.0 H

Ldi V
dt L L

ε
= = = = .  

(g) After a long time, we still have V1 = ε, so i1 = 2.0 A. 
 
(h) Since now VL = 0, i2 = ε/R2 = 10 V/10 Ω = 1.0 A. 
 
(i) is = i1 + i2 = 2.0 A + 1.0 A = 3.0 A. 
 
(j) Since VL = 0, V2 = ε – VL = ε = 10 V. 
 
(k) VL = 0. 
 

(l) 2 0Ldi V
dt L

= = .  

 

80. Using Eq. 30-41: ( )1 ,Lti e
R

τε −= −  where τL = 2.0 ns, we find 

 
1ln 1.0 ns.

1 /Lt
iR

τ
ε

⎛ ⎞= ≈⎜ ⎟−⎝ ⎠
 

 
81. Using Ohm’s law, we relate the induced current to the emf and (the absolute value of) 
Faraday’s law: 

 | | 1 di
R R dt
ε Φ

= = . 

 
As the loop is crossing the boundary between regions 1 and 2 (so that “x” amount of its 
length is in region 2 while “D – x” amount of its length remains in region 1) the flux is 
 
         ΦB = xHB2 + (D – x)HB1= DHB1 + xH(B2 – B1) 
which means  
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95. (a) As the switch closes at t = 0, the current being zero in the inductors serves as an 
initial condition for the building-up of current in the circuit. Thus, the current through any 
element of this circuit is also zero at that instant. Consequently, the loop rule requires the 
emf (εL1) of the L1 = 0.30 H inductor to cancel that of the battery. We now apply (the 
absolute value of) Eq. 30-35 
 

di
dt L

L= = =
ε 1

1

6 0
0 30

20.
.

.A s  

 
(b) What is being asked for is essentially the current in the battery when the emfs of the 
inductors vanish (as t → ∞ ). Applying the loop rule to the outer loop, with R1 = 8.0 Ω, 
we have 

1 1 2
1

6.0V0 0.75A.L Li R i
R

ε ε ε− − − = ⇒ = =  

 
96. Since 2 ,A =  we have / 2 /dA dt d dt= . Thus, Faraday's law, with N = 1, becomes  
 

( ) 2Bd d BA dA dB B
dt dt dt dt

ε Φ
= − = − = − = −  

 
which yields ε = 0.0029 V. 
 
97. The self-inductance and resistance of the coil may be treated as a "pure" inductor in 
series with a "pure" resistor, in which case the situation described in the problem may be 
addressed by using Eq. 30-41.  The derivative of that solution is 
 

/ / /(1 )L L Lt t t

L

di d e e e
dt dt R R L

τ τ τε ε ε
τ

− − −⎡ ⎤= − = =⎢ ⎥⎣ ⎦
 

 
With τL = 0.28 ms (by Eq. 30-42), L = 0.050 H, and ε = 45 V, we obtain di/dt = 12 A/s 
when t = 1.2 ms. 
 
98. (a)  From Eq. 30-35, we find L = (3.00 mV)/(5.00 A/s) = 0.600 mH. 
 
(b) Since NΦ = iL (where Φ = 40.0 μWb and i = 8.00 A), we obtain N = 120. 
 
 


