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Chapter 29 
 
 
1. (a) The magnitude of the magnetic field due to the current in the wire, at a point a 
distance r from the wire, is given by 

B i
r

=
μ0

2p
.  

With r = 20 ft = 6.10 m, we have 
 

B =
× ⋅

= × =−
4 100
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(b) This is about one-sixth the magnitude of the Earth’s field. It will affect the compass 
reading. 
 
2. Equation 29-1 is maximized (with respect to angle) by setting θ = 90º ( = π/2 rad). Its 
value in this case is  

 0
max 24

i dsdB
R

μ
π

= . 

 
From Fig. 29-34(b), we have 12

max 60 10  T.B −= ×  We can relate this Bmax to our dBmax by 
setting “ds” equal to 1 ×  10−6 m and R = 0.025 m.  This allows us to solve for the current: 
i = 0.375 A.  Plugging this into Eq. 29-4 (for the infinite wire) gives B∞ = 3.0 μT. 
 
3. (a) The field due to the wire, at a point 8.0 cm from the wire, must be 39 μT and must 
be directed due south. Since B i r= μ 0 2p ,  
 

i rB
= =

×

× ⋅
=
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(b) The current must be from west to east to produce a field that is directed southward at 
points below it. 
 
4. The straight segment of the wire produces no magnetic field at C (see the straight 
sections discussion in Sample Problem — “Magnetic field at the center of a circular arc 
of current”). Also, the fields from the two semicircular loops cancel at C (by symmetry). 
Therefore, BC = 0. 
 
5. (a) We find the field by superposing the results of two semi-infinite wires (Eq. 29-7) 
and a semicircular arc (Eq. 29-9 with φ = π rad). The direction of B  is out of the page, as 
can be checked by referring to Fig. 29-6(c). The magnitude of B  at point a is therefore 
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upon substituting i = 10 A and R = 0.0050 m.  
 
(b) The direction of this field is out of the page, as Fig. 29-6(c) makes clear. 
 
(c) The last remark in the problem statement implies that treating b as a point midway 
between two infinite wires is a good approximation. Thus, using Eq. 29-4, 
 

7
40 0 (4 10 T m/A)(10 A)2 8.0 10 T.

2 (0.0050 m)b
i iB
R R

μ μ π
π π

−
−× ⋅⎛ ⎞= = = = ×⎜ ⎟π⎝ ⎠

 

 
(d) This field, too, points out of the page. 
 
6. With the “usual” x and y coordinates used in Fig. 29-37, then the vector  r  

→
  pointing 

from a current element to P is ˆ ˆi j .r s R= − +  Since îds ds= , then | | .ds r Rds× =  

Therefore, with 2 2r s R= + ,  Eq. 29-3 gives 
 

 0
2 2 3/ 24 ( )
iR dsdB

s R
μ
π

=
+

. 

 
 (a) Clearly, considered as a function of s  (but thinking of “ds” as some finite-sized 
constant value), the above expression is maximum for s = 0.  Its value in this case is 

2
max 0 / 4dB i ds Rμ π= .  

 
(b) We want to find the s value such that max /10dB dB= . This is a nontrivial algebra 
exercise, but is nonetheless straightforward. The result is s = 102/3 − 1 R. If we set 

2.00 cm,R =  then we obtain s = 3.82 cm. 
 
7. (a) Recalling the straight sections discussion in Sample Problem — “Magnetic field at 
the center of a circular arc of current,” we see that the current in the straight segments 
collinear with P do not contribute to the field at that point. Using Eq. 29-9 (with φ = θ) 
and the right-hand rule, we find that the current in the semicircular arc of radius b 
contributes μ θ0 4i bp  (out of the page) to the field at P. Also, the current in the large 
radius arc contributes μ θ0 4i ap  (into the page) to the field there. Thus, the net field at P 
is 

0 1 1 (4 T m A)(0.411A)(74 /180 ) 1 1
4 4 0.107m 0.135m
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(b) The direction is out of the page. 
 
8. (a) Recalling the straight sections discussion in Sample Problem — “Magnetic field at 
the center of a circular arc of current,” we see that the current in segments AH and JD do 
not contribute to the field at point C. Using Eq. 29-9 (with φ = π) and the right-hand rule, 
we find that the current in the semicircular arc H J contributes μ0 14i R  (into the page) to 
the field at C. Also, arc D A contributes μ0 24i R  (out of the page) to the field there. Thus, 
the net field at C is  
 

0

1 2

1 1 (4 T m A)(0.281A) 1 1 1.67 T.
4 4 0.0315m 0.0780m

iB
R R

μ ⎛ ⎞ × ⋅ ⎛ ⎞= − = − = ×⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

-7
-6p 10 10  

 
(b) The direction of the field is into the page. 
 
9. (a) The currents must be opposite or antiparallel, so that the resulting fields are in the 
same direction in the region between the wires. If the currents are parallel, then the two 
fields are in opposite directions in the region between the wires. Since the currents are the 
same, the total field is zero along the line that runs halfway between the wires. 
 
(b) At a point halfway between they have the same magnitude, μ0i/2πr. Thus the total 
field at the midpoint has magnitude B = μ0i/πr and  
 

( )( )6m 300 10 T
30A.

4 T m A
rBi

μ

−×
= = =
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p 10

 

 
10. (a) Recalling the straight sections discussion in Sample Problem — “Magnetic field 
at the center of a circular arc of current,” we see that the current in the straight segments 
collinear with C do not contribute to the field at that point. 
 
Equation 29-9 (with φ = π) indicates that the current in the semicircular arc contributes 
μ0 4i R  to the field at C. Thus, the magnitude of the magnetic field is 
 

0 (4 T m A)(0.0348A) 1.18 T.
4 4(0.0926m)

iB
R

μ × ⋅
= = = ×

-7
-7p 10 10  

 
(b) The right-hand rule shows that this field is into the page. 
 
11. (a) 

1 0 1 1/ 2PB i rμ π=  where i1 = 6.5 A and r1 = d1 + d2 = 0.75 cm + 1.5 cm = 2.25 cm, 
and 

2 0 2 2/ 2PB i rμ π=  where r2 = d2 = 1.5 cm. From BP1 = BP2 we get 
 

( )2
2 1

1

1.5 cm6.5A 4.3A.
2.25 cm

ri i
r

⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟
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(b) Using the right-hand rule, we see that the current i2 carried by wire 2 must be out of 
the page. 
 
12. (a) Since they carry current in the same direction, then (by the right-hand rule) the 
only region in which their fields might cancel is between them. Thus, if the point at 
which we are evaluating their field is r away from the wire carrying current i and is d – r 
away from the wire carrying current 3.00i, then the canceling of their fields leads to 
 

0 0 (3 ) 16.0 cm 4.0 cm.
2 2 ( ) 4 4

i i dr
r d r

μ μ
π π

= ⇒ = = =
−

 

 
(b) Doubling the currents does not change the location where the magnetic field is zero. 
 
13. Our x axis is along the wire with the origin at the midpoint. The current flows in the 
positive x direction. All segments of the wire produce magnetic fields at P1 that are out of 
the page. According to the Biot-Savart law, the magnitude of the field any (infinitesimal) 
segment produces at P1 is given by 
 

dB i
r

dx=
μ θ0

24p
sin  

 
where θ (the angle between the segment and a line drawn from the segment to P1) and r 
(the length of that line) are functions of x. Replacing r with x R2 2+  and sin θ with 
R r R x R= +2 2 ,  we integrate from x = –L/2 to x = L/2. The total field is 
 

( ) ( )
( )( )

( )

2 20 0 0
3 2 1 22 2 22 2 2 2 2 2

8

2 2

1
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14. We consider Eq. 29-6 but with a finite upper limit (L/2 instead of ∞).  This leads to  
 

 0
2 2

/ 2
2 ( / 2)

i LB
R L R

μ
=

+π
. 

 
In terms of this expression, the problem asks us to see how large L must be (compared 
with R) such that the infinite wire expression B∞ (Eq. 29-4) can be used with no more 
than a 1% error.  Thus we must solve 
 

B∞ – B
B  = 0.01. 
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This is a nontrivial algebra exercise, but is nonetheless straightforward. The result is  
 

200 14.1     14.1
201

R LL R
R

= ≈ ⇒ ≈ . 

 
15. (a) As discussed in Sample Problem — “Magnetic field at the center of a circular arc 
of current,” the radial segments do not contribute to BP  and the arc segments contribute 
according to Eq. 29-9 (with angle in radians). If k  designates the direction “out of the 
page” then 

( )( )
( )

( )( )
( )

0 0 60.40 A rad 0.80 A 2 / 3radˆ ˆ ˆk k (1.7 10  T)k
4 0.050m 4 0.040m

B
μ π μ π

π π
−= − = − ×  

 
or 6| | 1.7 10 TB −= × . 
 
(b) The direction is k̂− , or into the page. 
 
(c) If the direction of i1 is reversed, we then have 
 

( )( )
( )

( )( )
( )

0 0 60.40A rad 0.80A 2 / 3radˆ ˆ ˆk k (6.7 10  T)k
4 0.050m 4 0.040m

B
μ π μ π

π π
−= − − = − ×  

 
or 6| | 6.7 10 T.B −= ×   
 
(d) The direction is k̂− , or into the page. 
 
16. Using the law of cosines and the requirement that B = 100 nT, we have 
 

 
2 2 2

1 1 2

1 2

cos 144
2

B B B
B B

θ − ⎛ ⎞+ −
= = °⎜ ⎟−⎝ ⎠

, 

 
where Eq. 29-10 has been used to determine B1

 (168 nT) and B2 (151 nT). 
 
17. Our x axis is along the wire with the origin at the right endpoint, and the current is in 
the positive x direction. All segments of the wire produce magnetic fields at P2 that are 
out of the page. According to the Biot-Savart law, the magnitude of the field any 
(infinitesimal) segment produces at P2 is given by  
 

dB i
r

dx=
μ θ0

24p
sin  
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where θ (the angle between the segment and a line drawn from the segment to P2) and r 
(the length of that line) are functions of x. Replacing r with x R2 2+  and sin θ with 
R r R x R= +2 2 ,  we integrate from x = –L to x = 0. The total field is 
 

( ) ( )
( )( )

( )
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18. In the one case we have Bsmall + Bbig = 47.25 μT, and the other case gives Bsmall – Bbig 
= 15.75 μT (cautionary note about our notation: Bsmall refers to the field at the center of 
the small-radius arc, which is actually a bigger field than Bbig!).  Dividing one of these 
equations by the other and canceling out common factors (see Eq. 29-9) we obtain 
 

 small big small big

small big small big

(1/ ) (1/ ) 1 ( / )
3

(1/ ) (1/ ) 1 ( / )
r r r r
r r r r

+ +
= =

− −
 . 

 
The solution of this is straightforward: rsmall = rbig /2. Using the given fact that the 

big 4.00 cm,r =  then we conclude that the small radius is small 2.00 cm.r =  
 
19. The contribution to netB  from the first wire is (using Eq. 29-4) 
 

 
7

60 1
1

1

(4 10 T m/A)(30 A)ˆ ˆ ˆk k (3.0 10  T)k.
2 2 (2.0 m)

iB
r

μ
π π

−
−π× ⋅

= = = ×  

 
The distance from the second wire to the point where we are evaluating netB  is r2 = 4 m − 
2 m = 2 m.  Thus, 
 

7
60 2

2
2

(4 10 T m/A)(40 A)ˆ ˆ ˆi i (4.0 10  T)i.
2 2 (2.0 m)

iB
r

μ
π π

−
−π× ⋅

= = = ×  

 
and consequently is perpendicular to 1B .  The magnitude of netB  is therefore 
 
 6 2 6 2 6

net| | (3.0 10  T) (4.0 10  T) 5.0 10  TB − − −= × + × = × . 
 
20. (a) The contribution to BC from the (infinite) straight segment of the wire is 
 

B i
RC1

0

2
=

μ
π

.  
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The contribution from the circular loop is B i
RC2
0

2
=

μ .  Thus, 

 
( )( )

( )
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BC  points out of the page, or in the +z direction. In unit-vector notation, 

7 ˆ(2.53 10 T)kCB −= ×  
 
(b) Now, B BC C1 2⊥  so 
 

( )( )
( )

3
2 2 70
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iB B B
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and BC  points at an angle (relative to the plane of the paper) equal to 
 

1 11

2

1tan tan 17.66 .C

C

B
B π

− −⎛ ⎞ ⎛ ⎞= = °⎜ ⎟ ⎜ ⎟
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In unit-vector notation,  
 
 7 7 8ˆ ˆ ˆ ˆ2.02 10 T(cos17.66 i sin17.66 k) (1.92 10 T)i (6.12 10 T)kCB − − −= × ° + ° = × + × . 
 
21. Using the right-hand rule (and symmetry), we see that B → net points along what we will 
refer to as the y axis (passing through P), consisting of two equal magnetic field y-
components.  Using Eq. 29-17, 

0
net| | 2 sin

2
iB
r

μ θ
π

=  

where i = 4.00 A, r = 2 2
2 1 / 4 5.00 m,r d d= + =  and 

 1 1 12

1

4.00 m 4tan tan tan 53.1
/ 2 6.00 m / 2 3

d
d

θ − − −⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = = = °⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

. 

Therefore, 
0

net
(4 T m A)(4.00 A)| | sin sin 53.1 2.56  T

( m)
iB
r

μ πθ
π π

−7
−7×10 ⋅

= = ° = ×10
5.00

. 

 
22. The fact that By = 0 at x = 10 cm implies the currents are in opposite directions.  Thus, 
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2 ( ) 2 2y

i i iB
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using Eq. 29-4 and the fact that 1 24i i= . To get the maximum, we take the derivative with 
respect to x and set equal to zero.  This leads to 3x2 – 2Lx – L2 = 0, which factors and 
becomes (3x + L)(x − L) = 0, which has the physically acceptable solution: x = L .  This 
produces the maximum By: μoi2/2πL. To proceed further, we must determine L.   
Examination of the datum at x = 10 cm in Fig. 29-49(b) leads (using our expression 
above for By and setting that to zero) to L = 30 cm. 
 
(a) The maximum value of By occurs at x = L = 30 cm. 
 
(b) With i2 = 0.003 A we find μo i2 /2πL = 2.0 nT. 
 
(c) and  (d) Figure 29-49(b) shows that as we get very close to wire 2 (where its field 
strongly dominates over that of the more distant wire 1) By points along the –y direction. 
The right-hand rule leads us to conclude that wire 2’s current is consequently is into the 
page.  We previously observed that the currents were in opposite directions, so wire 1’s 
current is out of the page. 
 
23. We assume the current flows in the +x direction and the particle is at some distance d 
in the +y direction (away from the wire). Then, the magnetic field at the location of a 
proton with charge q is 0

ˆ( / 2 ) k.B i dμ π=  Thus, 
 

F qv B iq
d

v= × = ×
μ0

2p
.ke j  

 
In this situation, v v= − je j  (where v is the speed and is a positive value), and  q > 0. Thus, 
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24. Initially, we have Bnet,y = 0 and Bnet,x = B2 + B4 = 2(μo i /2πd) using Eq. 29-4, where 

0.15 md = . To obtain the 30º condition described in the problem, we must have  
 

 0
net , net, 1 3tan(30 ) 2 tan(30 )

2y x
iB B B B
d

μ
π

⎛ ⎞′= ° ⇒ − = °⎜ ⎟
⎝ ⎠

 

 
where B3 = μo i /2πd and 1 0 / 2 .B i dμ π′ ′=  Since tan(30º) = 1/ 3 , this leads to 
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(a) We now make the assumption that wire #2 must be at −π/2 rad (−90º, the bottom of 
the cylinder) since it would pose an obstacle for the motion of wire #1 (which is needed 
to make these graphs) if it were anywhere in the top semicircle.   
 
(b) Looking at the θ1 = 90º datum in Fig. 29-57(b)), where there is a maximum in Bnet x 
(equal to +6 μT), we are led to conclude that 1 6.0 T 2.0 T 4.0 TxB μ μ μ= − =  in that 
situation.  Using Eq. 29-4, we obtain  
 

 
6

1
1 7
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2 2 (0.200 m)(4.0 10  T) 4.0 A
4 10 T m/A

xRBi π π
μ π

−

−

×
= = =

× ⋅
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(c) The fact that Fig. 29-57(b) increases as θ1 progresses from 0 to 90º implies that wire 
1’s current is out of the page, and this is consistent with the cancellation of Bnet y at 

1 90θ = ° , noted earlier (with regard to Fig. 29-57(c)).   
 
(d) Referring now to Fig. 29-57(b) we note that there is no x-component of magnetic field 
from wire 1 when θ1 = 0, so that plot tells us that B2x = +2.0 μT. Using Eq. 29-4, we find 
the magnitudes of the current to be 
 

6
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2 7
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μ π

−

−

×
= = =
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(e) We can conclude (by the right-hand rule) that wire 2’s current is into the page.   
 
31. (a) Recalling the straight sections discussion in Sample Problem — “Magnetic field 
at the center of a circular arc of current,” we see that the current in the straight segments 
collinear with P do not contribute to the field at that point. We use the result of Problem 
29-21 to evaluate the contributions to the field at P, noting that the nearest wire segments 
(each of length a) produce magnetism into the page at P and the further wire segments 
(each of length 2a) produce magnetism pointing out of the page at P. Thus, we find (into 
the page) 

( )
( )( )

( )
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2 4 T m A 13 A2 2 22 2
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(b) The direction of the field is into the page. 
 
32. Initially we have 

 0 0

4i
i iB
R r

μ φ μ φ
π π

= +
4

 

 
using Eq. 29-9.  In the final situation we use Pythagorean theorem and write 
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cosines of some angle.  A little trig (and the use of the right-hand rule) leads us to 
conclude that when wire 2 is at angle θ2 (shown in Fig. 29-61) then its components are  
 
 2 2 2 2 2 2sin , cos .x yB B B Bθ θ= = −  
 
The magnitude-squared of their net field is then  (by Pythagoras’ theorem) the sum of the 
square of their net x-component and the square of their net y-component: 
 

2 2 2 2 2
2 2 1 2 2 1 2 1 2 2( sin ) ( cos ) 2 cos .B B B B B B B Bθ θ θ= + − = + −  

 
(since sin2θ + cos2θ =1), which we could also have gotten directly by using the law of 
cosines.  We have  

 0 1 0 2
1 260 nT, 40 nT.

2 2
i iB B
R R

μ μ
= = = =

π π
 

 
With the requirement that the net field have magnitude B = 80 nT, we find 
 

2 2 2
1 11 2

2
1 2

cos cos ( 1/ 4) 104 ,
2

B B B
B B

θ − −⎛ ⎞+ −
= = − = °⎜ ⎟

⎝ ⎠
 

 
where the positive value has been chosen. 
 
35. Equation 29-13 gives the magnitude of the force between the wires, and finding the x-
component of it amounts to multiplying that magnitude by cosφ = 

d2

d1
2 + d2

2 .  Therefore, 

the x-component of the force per unit length is 
 

 

7 3 3
0 1 2 2

2 2 2 2
1 2
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(4 10 T m/A)(4.00 10 A)(6.80 10 A)(0.050 m)
2 ( ) 2 [(0.0240 m) (0.050 m) ]

8.84 10 N/m.

xF i i d
L d d

μ
π π

− − −

−

π× ⋅ × ×
= =

+ +

= ×
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36. We label these wires 1 through 5, left to right, and use Eq. 29-13. Then, 
 
(a) The magnetic force on wire 1 is 
 

 
( )( )

( )
22 2

0 0
1 2

4

25 4 T m A 3.00A (10.0m)251 1 1 1 ˆ ˆ ˆj j j
2 2 3 4 24 24 8.00 10 m

ˆ(4.69 10 N) j.

i l i lF
d d d d d

πμ μ
π π π

−7

−

−
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(b) Similarly, for wire 2, we have 
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2 2
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2
51 1 ˆ ˆ ˆj j (1.88 10 N) j.

2 2 3 12
i l i lF

d d d
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π π
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(c) F3 = 0 (because of symmetry). 
 
(d) 4

4 2
ˆ( 1.88 10 N)jF F −= − = − × , and 

 
(e) 4

5 1
ˆ(4.69 10 N)jF F −= − = − × . 

 
37. We use Eq. 29-13 and the superposition of forces: F F F F4 14 24 34= + + . With θ = 45°, 
the situation is as shown on the right. 
 
The components of F4  are given by 
 

2 2 2
0 0 0

4 43 42
cos 45 3cos

2 42 2x
i i iF F F
a aa

μ μ μθ °
= − − = − − = −

p pp
 

and 
2 2 2

0 0 0
4 41 42

sin 45sin .
2 42 2y

i i iF F F
a aa

μ μ μθ °
= − = − =

p pp
 

Thus, 
 

( ) ( )( )
( )

1 2 22 22 2 21 22 2 0 0 0
4 4 4

4

10 4 T m A 7.50A3 10
4 4 4 4 0.135m

1.32 10 N/m

x y
i i iF F F
a a a

μ μ μ
π

−

⎡ ⎤ × ⋅⎛ ⎞ ⎛ ⎞
⎢ ⎥= + = − + = =⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

= ×

−7π 10

π π π

 
and F4  makes an angle φ with the positive x axis, where 
 

φ =
F
HG
I
KJ = −FHG

I
KJ = °− −tan tan .1 4

4

1 1
3

162
F
F

y

x

 

 
In unit-vector notation, we have 
 

1
ˆ ˆ ˆ ˆ(1.32 N/m)[cos162 i sin162 j] ( 1.25 N/m)i (4.17 N/m)jF = × ° + ° = − × + ×-4 -4 -510 10 10  

 
38. (a) The fact that the curve in Fig. 29-64(b) passes through zero implies that the 
currents in wires 1 and 3 exert forces in opposite directions on wire 2.  Thus, current i1 
points out of the page.  When wire 3 is a great distance from wire 2, the only field that 
affects wire 2 is that caused by the current in wire 1; in this case the force is negative 
according to Fig. 29-64(b).  This means wire 2 is attracted to wire 1, which implies (by 
the discussion in Section 29-2) that wire 2’s current is in the same direction as wire 1’s 
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current: out of the page.  With wire 3 infinitely far away, the force per unit length is given 
(in magnitude) as 6.27 ×  10−7 N/m.  We set this equal to 12 0 1 2 / 2F i i dμ π= . When wire 3 
is at x = 0.04 m the curve passes through the zero point previously mentioned, so the 
force between 2 and 3 must equal F12 there.  This allows us to solve for the distance 
between wire 1 and wire 2:  
 

d = (0.04 m)(0.750 A)/(0.250 A) = 0.12 m. 
 
Then we solve 6.27 ×  10−7 N/m= μo i1 i2 /2πd and obtain i2 = 0.50 A.  
 
(b) The direction of i2 is out of the page. 
 
39. Using a magnifying glass, we see that all but i2 are directed into the page. Wire 3 is 
therefore attracted to all but wire 2. Letting d = 0.500 m, we find the net force (per meter 
length) using Eq. 29-13, with positive indicated a rightward force: 
 

0 3 51 2 4| |
2 2 2

i ii i iF
d d d d

μ
π

⎛ ⎞= − + + +⎜ ⎟
⎝ ⎠

 

 
which yields 7| | / 8.00 10 N/mF −= × . 
 
40. Using Eq. 29-13, the force on, say, wire 1 (the wire at the upper left of the figure) is 
along the diagonal (pointing toward wire 3, which is at the lower right). Only the forces 
(or their components) along the diagonal direction contribute. With θ = 45°, we find the 
force per unit meter on wire 1 to be 
 

( )( )
( )

2 2 2
0 0 0

1 12 13 14 12 13

2

2

3| | 2 cos 2 cos 45
2 2 2 2 2

4 T m A 15.0A3 1.12 N/m.
8.50 10 m2 2

i i iF F F F F F
a aa

μ μ μθ
π

π −

⎛ ⎞ ⎛ ⎞
= + + = + = °+ =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

× ⋅
= = ×

×

−7
−3

π π

π 10
10

 

 
The direction of 1F  is along ˆ ˆˆ (i j) / 2r = − . In unit-vector notation, we have  
 

 1
(1.12 N/m) ˆ ˆ ˆ ˆ(i j) (7.94 N/m)i ( 7.94 N/m)j

2
F ×

= − = × + − ×
-3

-4 -410 10 10  

 
41. The magnitudes of the forces on the sides of the rectangle that are parallel to the long 
straight wire (with i1 = 30.0 A) are computed using Eq. 29-13, but the force on each of 
the sides lying perpendicular to it (along our y axis, with the origin at the top wire and +y 
downward) would be figured by integrating as follows: 
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F i i
y

dy
a

a b

⊥

+
= zsides

2 0 1

2
μ
π

.  

 
Fortunately, these forces on the two perpendicular sides of length b cancel out. For the 
remaining two (parallel) sides of length L, we obtain 
 

( )
( )( )( )( )( )

( )

0 1 2 0 1 2

7 2
3

1 1
2 2

4 10 T m/A 30.0A 20.0A 8.00cm 300 10 m
3.20 10 N,

2 1.00cm 8.00cm

i i L i i bF
a a d a a b

μ μ
π π

π

π

− −
−

⎛ ⎞= − =⎜ ⎟+ +⎝ ⎠

× ⋅ ×
= = ×

+

 

 
and F  points toward the wire, or ĵ+ . That is, 3 ˆ(3.20 10 N) jF −= ×  in unit-vector notation.  
 
42. The area enclosed by the loop L is A d d d= =1

2
24 3 6( )( ) . Thus 

 
( )( )( )( )27 2 6

0 0 4 T m A 15A m 6 0.20m 4.5 10 T m.
c
B ds i jAμ μ − −⋅ = = = × ⋅ = × ⋅∫ π 10  

 
43. We use Eq. 29-20 2

0 / 2B ir aμ π=  for the B-field inside the wire ( r a< ) and Eq. 29-17 

0 / 2B i rμ π=  for that outside the wire (r > a).  
 
(a) At 0,r =  0B = . 
 

(b) At 0.0100mr = , 
7

40
2 2

(4 10 T m/A)(170A)(0.0100m) 8.50 10 T.
2 2 (0.0200m)

irB
a

μ π
π π

−
−× ⋅

= = = ×  

 

(c) At 0.0200mr a= = , 
7

30
2 2

(4 10 T m/A)(170A)(0.0200m) 1.70 10 T.
2 2 (0.0200m)

irB
a

μ π
π π

−
−× ⋅

= = = ×  

 

(d) At 0.0400mr = , 
7

40 (4 10 T m/A)(170A) 8.50 10 T.
2 2 (0.0400m)

iB
r

μ π
π π

−
−× ⋅

= = = ×  

 
44. We use Ampere’s law: B ds i⋅ =z μ 0 , where the integral is around a closed loop and i 

is the net current through the loop.  
 
(a) For path 1, the result is 
 

( ) ( )7 6
01

5.0A 3.0A (4 10 T m/A) 2.0A 2.5 10 T m.B ds μ π − −⋅ = − + = × ⋅ − = − × ⋅∫  

 
(b) For path 2, we find 
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( ) ( )7 5

02
5.0A 5.0A 3.0A (4 10 T m/A) 13.0A 1.6 10 T m.B ds μ − −⋅ = − − − = π× ⋅ − = − × ⋅∫  

 
45. (a) Two of the currents are out of the page and one is into the page, so the net current 
enclosed by the path is 2.0 A, out of the page. Since the path is traversed in the clockwise 
sense, a current into the page is positive and a current out of the page is negative, as 
indicated by the right-hand rule associated with Ampere’s law. Thus, 
 

( )7 6
0 (4 10 T m/A) 2.0A 2.5 10 T m.B ds iμ π − −⋅ = − = − × ⋅ = − × ⋅∫  

 
(b) The net current enclosed by the path is zero (two currents are out of the page and two 
are into the page), so B ds i⋅ = =z μ0 0enc . 

 
46. A close look at the path reveals that only currents 1, 3, 6 and 7 are enclosed. Thus, 
noting the different current directions described in the problem, we obtain 
 

( ) ( )( )7 3 8
0 07 6 3 5 5 4 10 T m/A 4.50 10 A 2.83 10 T m.B ds i i i i iμ μ − − −⋅ = − + + = = π× ⋅ × = × ⋅∫  

 
47. For r a≤ , 

( ) ( )
2

0 enc 0 0 0 0
00 0

2 2 .
2 2 2 3

r ri J rrB r J r rdr J rdr
r r a a

μ μ μ μ⎛ ⎞= = = =⎜ ⎟
⎝ ⎠∫ ∫p p

p p p
 

 
(a) At 0,r =  0B = . 
 
(b) At / 2r a= , we have  
 

( )
2 7 2 3 2

70 0
3

(4 10 T m/A)(310A/m )(3.1 10 m / 2) 1.0 10 T.
3 3(3.1 10 m)
J rB r
a

μ π − −
−

−

× ⋅ ×
= = = ×

×
 

 
(c) At ,r a=  

( )
7 2 3

70 0 (4 10 T m/A)(310A/m )(3.1 10 m) 4.0 10 T.
3 3
J aB r a μ − −

−π× ⋅ ×
= = = = ×  

 
48. (a) The field at the center of the pipe (point C) is due to the wire alone, with a 
magnitude of 

( )
0 wire 0 wire .

2 3 6C
i iB

R R
μ μ
π π

= =  

 
For the wire we have BP, wire > BC, wire. Thus, for BP = BC = BC, wire, iwire must be into the 
page: 



CHAPTER 29 1144 

( )
0 wire 0

,wire ,pipe .
2 2 2P P P

i iB B B
R R

μ μ
π π

= − = −  

 
Setting BC = –BP we obtain iwire = 3i/8 = 3 33(8.00 10 A) / 8 3.00 10 A− −× = × . 
 
(b) The direction is into the page. 
 
49. (a) We use Eq. 29-24. The inner radius is r = 15.0 cm, so the field there is 
 

( )( )( )
( )

7
40

4 10 T m/A 0.800A 500
5.33 10 T.

2 2 0.150m
iNB
r

μ
π π

−
−

π× ⋅
= = = ×  

 
(b) The outer radius is r = 20.0 cm. The field there is 
 

( )( )( )
( )

7
40

4 10 T m/A 0.800A 500
4.00 10 T.

2 2 0.200m
iNB
r

πμ
π π

−
−

× ⋅
= = = ×  

 
50. It is possible (though tedious) to use Eq. 29-26 and evaluate the contributions (with 
the intent to sum them) of all 1200 loops to the field at, say, the center of the solenoid. 
This would make use of all the information given in the problem statement, but this is not 
the method that the student is expected to use here. Instead, Eq. 29-23 for the ideal 
solenoid (which does not make use of the coil radius) is the preferred method: 
 

B in i N
= = F

HG
I
KJμ μ0 0  

 
where i = 3.60 A, 0.950 m,=  and N = 1200. This yields B = 0.00571 T. 
 
51. It is possible (though tedious) to use Eq. 29-26 and evaluate the contributions (with 
the intent to sum them) of all 200 loops to the field at, say, the center of the solenoid. 
This would make use of all the information given in the problem statement, but this is not 
the method that the student is expected to use here. Instead, Eq. 29-23 for the ideal 
solenoid (which does not make use of the coil diameter) is the preferred method: 
 

B in i N
= = F

HG
I
KJμ μ0 0  

 
where i = 0.30 A, 0.25 m,= and N = 200. This yields 43.0 10  TB −= × . 
 
52. We find N, the number of turns of the solenoid, from the magnetic field 

0 /oB in iNμ μ= = : 0/ .N B iμ=  Thus, the total length of wire used in making the 
solenoid is 
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2 2 2 2 60 10 230 10 130

18 0
108

0

2 3

π
π π

π
rN rB

i
= =

× ×

× ⋅
=

− −

−μ
. . .

.

m T m

2 4 10 T m / A A
m.

7

c hc hb g
c hb g  

 
53. The orbital radius for the electron is 
 

r mv
eB

mv
e ni

= =
μ0

 

which we solve for i: 
 

( )( )( )
( )( )( )( )

31 8

19 7 2
0

9.11 10 kg 0.0460 3.00 10 m s

1.60 10 C 4 T m A 100 0.0100m 2.30 10 m

0.272A.

mvi
e nrμ

−

− − −

× ×
= =

× π×10 ⋅ ×

=

 

 
54. As the problem states near the end, some idealizations are being made here to keep 
the calculation straightforward (but are slightly unrealistic).  For circular motion (with 
speed, v⊥, which represents the magnitude of the component of the velocity perpendicular 
to the magnetic field [the field is shown in Fig. 29-19]), the period is (see Eq. 28-17) 
 

T = 2πr/v⊥ = 2πm/eB. 
 
Now, the time to travel the length of the solenoid is /t L v=  where v|| is the component 
of the velocity in the direction of the field (along the coil axis) and is equal to v cos θ   
where θ  = 30º.  Using Eq. 29-23 (B = μ0in) with n = N/L, we find the number of 
revolutions made is t /T = 1.6 × 106. 
 
55. (a) We denote the B  fields at point P on the axis due to the solenoid and the wire as 
Bs  and Bw , respectively. Since Bs  is along the axis of the solenoid and Bw  is 
perpendicular to it, B Bs w⊥ . For the net field B  to be at 45° with the axis we then must 
have Bs = Bw. Thus, 

B i n B i
ds s w
w= = =μ μ

0
0

2π
,  

 
which gives the separation d to point P on the axis: 
 

( )( )3

6.00A 4.77cm.
2 2 20.0 10 A 10 turns cm

w

s

id
i nπ π −

= = =
×

 

 
(b) The magnetic field strength is 
 

( )( )( )7 3 52 2 4 10 T m A 20.0 10 A 10 turns 0.0100 m 3.55 10 T.sB B π − − −= = × ⋅ × = ×  
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56. We use Eq. 29-26 and note that the contributions to BP  from the two coils are the 
same. Thus, 
 

( )
( ) ( )

( )

72
60 0

3 222

8 4 10 T m/A (200) 0.0122A2 8 8.78 10 T.
5 5 5 5 0.25m2 2

P
iR N NiB

RR R

μ μ
−

−
π× ⋅

= = = = ×
⎡ ⎤+⎣ ⎦

 

 
BP  is in the positive x direction. 
 
57. (a) The magnitude of the magnetic dipole moment is given by μ = NiA, where N is the 
number of turns, i is the current, and A is the area. We use A = πR2, where R is the radius. 
Thus, 

μ = = = ⋅Ni Rπ π2 2 2300 4 0 0 025 2 4b gb g b g. . . .A m A m  
 
(b) The magnetic field on the axis of a magnetic dipole, a distance z away, is given by Eq. 
29-27: 

B
z

=
μ μ0

32π
.  

We solve for z: 

( )( )
( )

137 213
0

6

4 10 T m A 2.36 A m
46cm .

2 2 5.0 10 T
z

B
πμ μ

π π

−

−

⎛ ⎞× ⋅ ⋅⎛ ⎞ ⎜ ⎟= = =⎜ ⎟ ⎜ ⎟×⎝ ⎠ ⎝ ⎠
 

 
58. (a) We set z = 0 in Eq. 29-26 (which is equivalent using to Eq. 29-10 multiplied by 
the number of loops). Thus, B(0) ∝ i/R. Since case b has two loops, 
 

2 2 4.0b b a

a a b

B i R R
B i R R

= = = . 

 
(b) The ratio of their magnetic dipole moments is 
 

22

2

2 2 1 12 0.50.
2 2

b b b

a a a

iA R
iA R

μ
μ

⎛ ⎞= = = = =⎜ ⎟
⎝ ⎠

 

 
59. The magnitude of the magnetic dipole moment is given by μ = NiA, where N is the 
number of turns, i is the current, and A is the area. We use A = πR2, where R is the radius. 
Thus, 

μ = = ⋅200 0 30 0 472 2b gb g b g. . .A m A mπ 0.050  
 
60. Using Eq. 29-26, we find that the net y-component field is 
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2 2

0 1 0 2
2 2 3/ 2 2 2 3/ 2

1 2

,
2 ( ) 2 ( )y

i R i RB
R z R z
μ μ

π π
= −

+ +
 

 
where  z1

2 = L2 (see Fig. 29-73(a)) and z2
2 = y2 (because the central axis here is denoted y 

instead of z).  The fact that there is a minus sign between the two terms, above, is due to 
the observation that the datum in Fig. 29-73(b) corresponding to By = 0 would be 
impossible without it (physically, this means that one of the currents is clockwise and the 
other is counterclockwise).   
 
(a) As y → ∞, only the first term contributes and (with By = 7.2 × 10−6 T given in this case) 
we can solve for i1.  We obtain i1 = (45/16π) Α  ≈ 0.90 A. 
 
(b) With loop 2 at y = 0.06 m (see Fig. 29-73(b)) we are able to determine i2 from 
 

2 2
0 1 0 2

2 2 3/ 2 2 2 3/ 2 .
2( ) 2( )

i R i R
R L R y
μ μ

=
+ +

 

 
We obtain i2 = (117 13 /50π) Α ≈ 2.7 A. 
 
61. (a) We denote the large loop and small coil with subscripts 1 and 2, respectively. 
 

B i
R1
0 1

1

7
5

2
4 10 15

2 012
7 9 10= =

× ⋅
= ×

−
−μ π T m A A

m
T.

c hb g
b g.

.  

 
(b) The torque has magnitude equal to 
 

( )( )( ) ( )

2
2 1 2 1 2 2 2 1 2 2 2 1

22 5

6

| | sin 90

1.3A 0.82 10 m 7.9 10 T

1.1 10 N m.

B B N i A B N i r Bτ μ μ π

π − −

−

= × = ° = =

= 50 × ×

= × ⋅

 

 
62. (a) To find the magnitude of the field, we use Eq. 29-9 for each semicircle (φ = π rad), 
and use superposition to obtain the result: 
 

( )7
0 0 0

7

(4 10 T m/A) 0.0562A1 1 1 1
4 4 4 0.0572m 0.0936m

4.97 10 T.

i i iB
a b a b

πμ π μ π μ
π π

−

−

× ⋅ ⎛ ⎞⎛ ⎞= + = + = +⎜ ⎟⎜ ⎟4 ⎝ ⎠ ⎝ ⎠
= ×

 

 
(b) By the right-hand rule, B  points into the paper at P (see Fig. 29-6(c)). 
 
(c) The enclosed area is 2 2( ) / 2,A a bπ π= +  which means the magnetic dipole moment 
has magnitude 
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2 2 2 2 3 2(0.0562A)| | ( ) [(0.0572m) (0.0936m) ] 1.06 10 A m .

2 2
i a bπ πμ −= + = + = × ⋅  

 
(d) The direction of μ  is the same as the B  found in part (a): into the paper.  
 
63. By imagining that each of the segments bg and cf (which are shown in the figure as 
having no current) actually has a pair of currents, where both currents are of the same 
magnitude (i) but opposite direction (so that the pair effectively cancels in the final sum), 
one can justify the superposition. 
 
(a) The dipole moment of path abcdefgha is 
 

( )( )
( )( )

2 2

2 2 2

ˆ ˆ ˆ ˆj i i j

ˆ ˆ6.0A 0.10m j (6.0 10 A m ) j .

bc f gb abgha cde f c ia iaμ μ μ μ

−

= + + = − + =

= = × ⋅
 

 
(b) Since both points are far from the cube we can use the dipole approximation. For  
(x, y, z) = (0, 5.0 m, 0), 
 

6 2 2
110

3 3

ˆ(1.26 10 T m/A)(6.0 10 m A) j ˆ(0, 5.0 m, 0) (9.6 10  T ) j .
2 2 m)

B
y

μ μ
π π

− −
−× ⋅ × ⋅

≈ = = ×
(5.0

 

 
64. (a) The radial segments do not contribute to ,PB  and the arc segments contribute 
according to Eq. 29-9 (with angle in radians).  If k^  designates the direction "out of the 
page" then 

0 0(7 / 4 rad) (7 / 4 rad)ˆ ˆk k
4 (4.00 m) 4 (2.00 m)P
i iB μ π μ π
π π

= −  

 
where i = 0.200 A.  This yields B →  = −2.75 × 10−8 k^  T, or | B → | = 2.75 × 10−8  T. 
 
(b) The direction is k̂− , or into the page. 
 
65. Using Eq. 29-20, 

 0
2| |

2
iB r
R

μ
π

⎛ ⎞= ⎜ ⎟
⎝ ⎠

, 

 
we find that r = 0.00128 m gives the desired field value. 
 
66. (a) We designate the wire along y = rA = 0.100 m wire A and the wire along y = rB = 
0.050 m wire B. Using Eq. 29-4, we have 
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68. We take the current (i = 50 A) to flow in the +x direction, and the electron to be at a 
point P, which is r = 0.050 m above the wire (where “up” is the +y direction). Thus, the 
field produced by the current points in the +z direction at P. Then, combining Eq. 29-4 
with Eq. 28-2, we obtain  

F e i r ve = − ×μ 0 2pb ge j.k  

 
(a) The electron is moving down: v v= − j  (where v = 1.0 × 107 m/s is the speed) so 
 

( ) 160 ˆ ˆi (3.2 10 N) i
2e
e ivF

r
μ −−

= − = ×
p

, 

or 16| | 3.2 10 NeF −= × . 
 
(b) In this case, the electron is in the same direction as the current: v v= i  so 
 

( ) 160 ˆ ˆj (3.2 10 N) j
2e
e ivF

r
μ
π

−−
= − = × , 

or 16| | 3.2 10 NeF −= × . 
 
(c) Now, v v= ± k  so Fe ∝ × = .k k 0  
 
69. (a) By the right-hand rule, the magnetic field B1  (evaluated at a) produced by wire 1 
(the wire at bottom left) is at φ = 150° (measured counterclockwise from the +x axis, in 
the xy plane), and the field produced by wire 2 (the wire at bottom right) is at φ = 210°. 
By symmetry B B1 2=d i  we observe that only the x-components survive, yielding 
 

50
1 2

ˆ ˆ2 cos 150 i ( 3.46 10 T)i 
2

iB B B μ
π

−⎛ ⎞= + = ° = − ×⎜ ⎟
⎝ ⎠

 

 
where i = 10 A,  = 0.10 m, and Eq. 29-4 has been used. To cancel this, wire b must 
carry current into the page (that is, the −k  direction) of value 
 

( )5
7

0

2 2 (0.087 m)3.46 10  T 15A
4 10 T m/Ab

ri B π π
μ π

−
−= = × =

× ⋅
 

 
where r = =3 2 0 087.  m and Eq. 29-4 has again been used. 
 
(b) As stated above, to cancel this, wire b must carry current into the page (that is, the z−  
direction). 
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to the sheet and only has a horizontal component. That is, the field at P must be purely 
horizontal, as drawn in Fig. 29-83. 
 
(b) The path used in evaluating B dsz ⋅  is rectangular, of horizontal length Δx (the 

horizontal sides passing through points P and P' respectively) and vertical size δy > Δy. 
The vertical sides have no contribution to the integral since B  is purely horizontal (so the 
scalar dot product produces zero for those sides), and the horizontal sides contribute two 
equal terms, as shown next. Ampere’s law yields 
 

0 0
12 .
2

B x x Bμ λ μ λΔ = Δ ⇒ =  

 

82. Equation 29-17 applies for each wire, with r R d= +2 22/b g  (by the Pythagorean 
theorem). The vertical components of the fields cancel, and the two (identical) horizontal 
components add to yield the final result 
 

( )( )
60 0

22

/ 22 1.25 10  T
2 2 / 2

i iddB
r r R d

μ μ
π π

−⎛ ⎞ ⎛ ⎞= = = ×⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ +

, 

 
where (d/2)/r is a trigonometric factor to select the horizontal component. It is clear that 
this is equivalent to the expression in the problem statement. Using the right-hand rule, 
we find both horizontal components point in the +x direction. Thus, in unit-vector 
notation, we have 6 ˆ(1.25 10  T)iB −= × . 
 
83. The two small wire segments, each of length a/4, shown in Fig. 29-85 nearest to point 
P, are labeled 1 and 8 in the figure (below left). Let k̂−  be a unit vector pointing into the 
page. 
 

 

 

 
We use the result of Problem 29-17: namely, the magnetic field at P2 (shown in Fig. 29-
43 and upper right) is  


