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Chapter 28 
 
 
1. (a) Equation 28-3 leads to 
 

v F
eB

B= =
×

× × °
= ×

−

− −sin
.

. . sin .
. .

φ
650 10

160 10 2 60 10 230
4 00 10

17

19 3
5N

C T
m sc hc h  

 
(b) The kinetic energy of the proton is 
 

( )( )22 27 5 161 1 1.67 10 kg 4.00 10 m s 1.34 10 J
2 2

K mv − −= = × × = × , 

 
which is equivalent to K = (1.34 × 10– 16 J) / (1.60 × 10– 19 J/eV) = 835 eV. 
 
2. The force associated with the magnetic field must point in the j  direction in order to 
cancel the force of gravity in the − j  direction. By the right-hand rule, B  points in the 

−k  direction (since i k j× − =e j ). Note that the charge is positive; also note that we need 

to assume By = 0. The magnitude |Bz| is given by Eq. 28-3 (with φ = 90°). Therefore, with 
21.0 10 kgm −= × , 42.0 10 m/s,v = ×  and 58.0 10 Cq −= × , we find 

 

ˆ ˆ ˆk k ( 0.061 T)kz
mgB B
qv

⎛ ⎞
= = − = −⎜ ⎟

⎝ ⎠
. 

 
3. (a) The force on the electron is 
 

( ) ( ) ( )
( ) ( )( ) ( )( )

( )

19 6 6

14

ˆ ˆ ˆ ˆi j i k

= 1.6 10 C 2.0 10 m s 0.15 T 3.0 10 m s 0.030 T

ˆ6.2 10 N k.

B x y x y x y y xF qv B q v v B B j q v B v B

−

−

= × = + × + = −

⎡ ⎤− × × − − ×⎣ ⎦

= ×

 

 
Thus, the magnitude of FB  is 6.2 × 1014 N, and FB  points in the positive z direction. 
 
(b) This amounts to repeating the above computation with a change in the sign in the 
charge. Thus, FB  has the same magnitude but points in the negative z direction, namely,  

( )14 ˆ6.2 10 N k.BF −= − ×  
 
4. (a) We use Eq. 28-3:  
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FB = |q| vB sin φ = (+ 3.2 × 10–19 C) (550 m/s) (0.045 T) (sin 52°) = 6.2 × 10–18 N. 

 
(b) The acceleration is  
 

a = FB/m = (6.2 × 10– 18 N) / (6.6 × 10– 27 kg) = 9.5 × 108 m/s2. 
 
(c) Since it is perpendicular to v FB,  does not do any work on the particle. Thus from the 
work-energy theorem both the kinetic energy and the speed of the particle remain 
unchanged. 
 
5. Using Eq. 28-2 and Eq. 3-30, we obtain 
 

F q v B v B q v B v Bx y y x x x y x= − = −d i b gd ik k3  
 
where we use the fact that By = 3Bx. Since the force (at the instant considered) is Fz k  
where Fz = 6.4 × 10–19 N, then we are led to the condition 
 

( ) ( )3 .
3

z
x y x z x

x y

Fq v v B F B
q v v

− = ⇒ =
−

 

 
Substituting vx = 2.0 m/s, vy = 4.0 m/s, and q = –1.6 × 10–19 C, we obtain  
 

19

19

6.4 10 N 2.0 T.
(3 ) ( 1.6 10 C)[3(2.0 m/s) 4.0 m]

z
x

x y

FB
q v v

−

−

×
= = = −

− − × −
 

 
6. The magnetic force on the proton is 
 
 F qv B= ×  

 
where  q = +e . Using Eq. 3-30 this becomes 
 
(4 × 10−17 )i^  + (2 × 10−17)j^  = e[(0.03vy + 40)i^  + (20 – 0.03vx)j

^  – (0.02vx + 0.01vy)k
^]   

 
with SI units understood.  Equating corresponding components, we find  
 
(a) vx = −3.5×103 m/s, and 
 
(b) vy = 7.0×103 m/s. 
 
7. We apply F q E v B m ae= + × =d i  to solve for E : 
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E m a
q

B ve= + ×

=
× ×

− ×
+ × +

= − − +

−

−

9 11 10 2 00 10

160 10
400 12 0 15 0

114 6 00 4 80

31 12 2

19

. .

.
. .

. . . .

kg m s i

C
T i km s j km s k

i j k V m

c hd i b g b g b g
e j

μ  

 
8. Letting F q E v B= + × =d i 0 , we get  
 

sinvB Eφ = . 
 
We note that (for given values of the fields) this gives a minimum value for speed 
whenever the sin φ factor is at its maximum value (which is 1, corresponding to φ = 90°). 
So  

 
3

3
min

1.50 10 V/m 3.75 10 m/s
0.400 T

Ev
B

×
= = = × . 

 
9. Straight-line motion will result from zero net force acting on the system; we ignore 
gravity. Thus, F q E v B= + × =d i 0 . Note that v B⊥  so v B vB× = . Thus, obtaining the 
speed from the formula for kinetic energy, we obtain  
 

( ) ( ) ( )
3

4

3 19 31

100 V /(20 10 m) 2.67 10 T.
2 / 2 1.0 10 V 1.60 10 C / 9.11 10 kge

E EB
v K m

−
−

− −

×
= = = = ×

× × ×
 

 
In unit-vector notation, 4 ˆ(2.67 10  T)kB −= − × . 
 
10. (a) The net force on the proton is given by 
 

( ) ( ) ( ) ( )
( )

19 3

18

ˆ ˆ ˆ1.60 10 C 4.00V m k+ 2000m s j 2.50 10 T i

ˆ1.44 10 N k.

E BF F F qE qv B − −

−

⎡ ⎤= + = + × = × × − ×⎣ ⎦

= ×

 
(b) In this case, we have 
 

( ) ( ) ( ) ( )

( )

19

19

ˆ ˆ ˆ1.60 10 C 4.00V m k 2000m s j 2.50 mT i

ˆ1.60 10 N k.

E BF F F qE qv B
−

−

= + = + ×

⎡ ⎤= × − + × −⎣ ⎦

= ×

 

 
(c) In the final case, we have 
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( ) ( ) ( ) ( )

( ) ( )

19

19 19

ˆ ˆ ˆ1.60 10 C 4.00V m i+ 2000m s j 2.50 mT i

ˆ ˆ6.41 10 N i+ 8.01 10 N k.

E BF F F qE qv B
−

− −

= + = + ×

⎡ ⎤= × × −⎣ ⎦

= × ×

 

 
11. Since the total force given by F e E v B= + ×d i  vanishes, the electric field E  must be 

perpendicular to both the particle velocity v  and the magnetic field B . The magnetic 
field is perpendicular to the velocity, so v B×  has magnitude vB and the magnitude of 
the electric field is given by E = vB. Since the particle has charge e and is accelerated 
through a potential difference V, 2 / 2mv eV=  and 2 .v eV m=  Thus, 
 

( ) ( )( )
( )

19 3
5

27

2 1.60 10 C 10 10 V2 1.2 T 6.8 10 V m.
9.99 10 kg

eVE B
m

−

−

× ×
= = = ×

×
 

 
12. (a) The force due to the electric field  ( F qE= )  is distinguished from that associated 
with the magnetic field ( F qv B= × )  in that the latter vanishes when the speed is zero 
and the former is independent of speed. The graph shows that the force (y-component) is 
negative at v = 0 (specifically, its value is –2.0 × 10–19 N there), which (because q = –e) 
implies that the electric field points in the +y direction.  Its magnitude is   
 

 
19

net ,
19

2.0 10 N 1.25 N/C 1.25 V/m
| | 1.6 10 C

yF
E

q

−

−

×
= = = =

×
. 

 
(b) We are told that the x and z components of the force remain zero throughout the 
motion, implying that the electron continues to move along the x axis, even though 
magnetic forces generally cause the paths of charged particles to curve (Fig. 28-11).  The 
exception to this is discussed in Section 28-3, where the forces due to the electric and 
magnetic fields cancel.  This implies (Eq. 28-7) B = E/v = 2.50 × 10−2 T.  
 
For F qv B= × to be in the opposite direction of F qE=  we must have v B×  in the 
opposite direction from ,E  which points in the +y direction, as discussed in part (a).   
Since the velocity is in the +x direction, then (using the right-hand rule) we conclude that 
the magnetic field must point in the +z direction ( i^ × k^   = −j^ ). In unit-vector notation, we 
have 2 ˆ(2.50 10  T)kB −= × . 
 
13. We use Eq. 28-12 to solve for V: 
 

( )( )
( )( )( )

6
28 3 19

23A 0.65 T
7.4 10 V.

8.47 10 m 150 m 1.6 10 C
iBV
nle μ

−
−

= = = ×
× ×
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14. For a free charge q inside the metal strip with velocity v  we have F q E v B= + ×d i . 
We set this force equal to zero and use the relation between (uniform) electric field and 
potential difference. Thus, 
 

v E
B

V V d
B

x y xy= =
−

=
×

× ×
=

−

− −

390 10

120 10 0850 10
0 382

9

3 2

.

. .
. .

V

T m
m s

c h
c hc h  

 
15. (a) We seek the electrostatic field established by the separation of charges (brought on 
by the magnetic force). With Eq. 28-10, we define the magnitude of the electric field as 
 

( )( )| | | | 20.0 m/s 0.030 T 0.600 V/mE v B= = = . 
 
Its direction may be inferred from Figure 28-8; its direction is opposite to that defined by 
v B× . In summary,  

ˆ(0.600V m)kE = −  
 
which insures that F q E v B= + ×d i  vanishes. 
 
(b) Equation 28-9 yields (0.600 V/m)(2.00 m) 1.20 VV Ed= = = . 
 
16. We note that B →  must be along the x axis because when the velocity is along that axis 
there is no induced voltage.  Combining Eq. 28-7 and Eq. 28-9 leads to  
 

V Vd
E vB

= =  

 
where one must interpret the symbols carefully to ensure that , ,d v  and B  are mutually 
perpendicular.  Thus, when the velocity if parallel to the y axis the absolute value of the 
voltage (which is considered in the same “direction” as d ) is 0.012 V, and  
 

0.012 V 0.20 m
(3.0 m/s)(0.020 T)zd d= = = . 

 
On the other hand, when the velocity is parallel to the z axis the absolute value of the 
appropriate voltage is 0.018 V, and  
 

0.018 V 0.30 m
(3.0 m/s)(0.020 T)yd d= = = . 

Thus, our answers are 
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(a) dx = 25 cm (which we arrive at “by elimination,” since we already have figured out dy 
and dz ), 
 
(b) dy = 30 cm, and 
 
(c) dz  = 20 cm. 
 
17. (a) Using Eq. 28-16, we obtain 
 

v rqB
m

eB
= = =

× ×

×
= ×

− −

−
α

2
4 00

2 4 50 10 160 10 120

4 00 166 10
2 60 10

2 19

27
6

.
. . .

. .
. .

u
m C T

u kg u
m s

c hc hb g
b gc h  

 
(b) T = 2πr/v = 2π(4.50 × 10–2 m)/(2.60 × 106 m/s) = 1.09 × 10–7 s. 
 
(c) The kinetic energy of the alpha particle is 
 

K m v= =
× ×

×
= ×

−

−

1
2

4 00 166 10 2 60 10

2 160 10
140 102

27 6 2

19
5

α

. . .

.
. .

u kg u m s

J eV
eV

b gc hc h
c h  

 
(d) ΔV = K/q = 1.40 × 105 eV/2e = 7.00 × 104 V. 
 
18. With the B  pointing “out of the page,” we evaluate the force (using the right-hand 
rule) at, say, the dot shown on the left edge of the particle’s path, where its velocity is 
down. If the particle were positively charged, then the force at the dot would be toward 
the left, which is at odds with the figure (showing it being bent toward the right). 
Therefore, the particle is negatively charged; it is an electron. 
 
(a) Using Eq. 28-3 (with angle φ equal to 90°), we obtain 
 

6| | 4.99 10 m s.
| |
Fv

e B
= = ×  

 
(b) Using either Eq. 28-14 or Eq. 28-16, we find r = 0.00710 m. 
 
(c) Using Eq. 28-17 (in either its first or last form) readily yields T = 8.93 × 10–9 s. 
 
19. Let ξ stand for the ratio ( / | |m q ) we wish to solve for. Then Eq. 28-17 can be written 
as T = 2πξ/B.   Noting that the horizontal axis of the graph (Fig. 28-36) is inverse-field 
(1/B) then we conclude (from our previous expression) that the slope of the line in the 
graph must be equal to 2πξ.  We estimate that slope is 7.5 × 10−9 T.s, which implies   
 
 9/ | | 1.2 10  kg/Cm qξ −= = × . 
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20. Combining Eq. 28-16 with energy conservation (eV = 
1
2 mev2 in this particular 

application) leads to the expression 
 

r = 
me
e B 

2eV
 me

 

 
which suggests that the slope of the r versus V  graph should be 22 /em eB . From Fig. 

28-37, we estimate the slope to be 5 × 10−5 in SI units. Setting this equal to 22 /em eB  
and solving, we find B = 6.7 × 10−2 T. 
 

21. (a) From K m ve=
1
2

2  we get 

 

v K
me

= =
× ×

×
= ×

−

−

2 2 120 10 160 10
911 10

2 05 10
3 19

31
7

. .
.

. .
eV eV J

kg
m s

c hc h
 

 
(b) From /er m v qB=  we get 
 

B m v
qr

e= =
× ×

× ×
= ×

−

− −
−

911 10 2 05 10

160 10 250 10
4 67 10

31 7

19 2
4

. .

. .
.

kg m s

C m
T.

c hc h
c hc h  

 
(c) The “orbital” frequency is 
 

( )
7

7
2

2.07 10 m s 1.31 10 Hz.
2 2 25.0 10 m

vf
rπ π −

×
= = = ×

×
 

 
(d) T = 1/f = (1.31 × 107 Hz)–1 = 7.63 × 10–8 s. 
 
22. Using Eq. 28-16, the radius of the circular path is 
 

2mv mKr
qB qB

= =  

 
where 2 / 2K mv=  is the kinetic energy of the particle. Thus, we see that K = (rqB)2/2m 
∝ q2m–1.  
 
(a) ( ) ( ) ( ) ( )2 22 1 4 1.0MeV;p p p p pK q q m m K K Kα α α= = = =  
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(b) ( ) ( ) ( ) ( )2 21 1 2 1.0 MeV 2 0.50MeV.d d p p d p pK q q m m K K= = = =  
 
23. From Eq. 28-16, we find 
 

( )( )
( )( )

31 6
5

19

9.11 10 kg 1.30 10 m s
2.11 10 T.

1.60 10 C 0.350 m
em vB

er

−
−

−

× ×
= = = ×

×
 

 
24. (a) The accelerating process may be seen as a conversion of potential energy eV into 

kinetic energy. Since it starts from rest, 1
2

2m v eVe =  and 

 

( )( )19
7

31

2 1.60 10 C 350 V2 1.11 10 m s.
9.11 10 kge

eVv
m

−

−

×
= = = ×

×
 

 
(b) Equation 28-16 gives 
 

( )( )
( )( )

31 7
4

19 3

9.11 10 kg 1.11 10 m s
3.16 10 m.

1.60 10 C 200 10 T
em vr

eB

−
−

− −

× ×
= = = ×

× ×
 

 
25. (a) The frequency of revolution is 
 

f Bq
me

= =
× ×

×
= ×

− −

−2
350 10 160 10

2 911 10
9 78 10

6 19

31
5

p p

. .

.
.

T C

kg
Hz.

c hc h
c h  

 
(b) Using Eq. 28-16, we obtain 
 

r m v
qB

m K
qB

e e= = =
× ×

× ×
=

− −

− −

2 2 911 10 100 160 10

160 10 350 10
0 964

31 19

19 6

. .

. .
. .

kg eV J eV

C T
m

c hb gc h
c hc h  

 
26. We consider the point at which it enters the field-filled region, velocity vector 
pointing downward. The field points out of the page so that v B×  points leftward, which 
indeed seems to be the direction it is “pushed’’; therefore, q > 0 (it is a proton). 
 
(a) Equation 28-17 becomes p2 / | |T m e Bπ= , or  
 

( ) ( )
( )

27
9

19

2 1.67 10
2 130 10

1.60 10 | |B

−
−

−

π ×
× =

×
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which yields B = 0 252. T . 
 
(b) Doubling the kinetic energy implies multiplying the speed by 2 . Since the period T 
does not depend on speed, then it remains the same (even though the radius increases by a 
factor of 2 ). Thus, t = T/2 = 130 ns. 
 
27. (a) We solve for B from m = B2qx2/8V (see Sample Problem — “Uniform circular 
motion of a charged particle in a magnetic field”): 
 

B Vm
qx

=
8

2 .  

 
We evaluate this expression using x = 2.00 m: 
 

B =
× ×

×
=

−

−

8 100 10 3 92 10

3 20 10 2 00
0 495

3 25

19 2

V kg

C m
T

c hc h
c hb g

.

. .
. .  

 
(b) Let N be the number of ions that are separated by the machine per unit time. The 
current is i = qN and the mass that is separated per unit time is M = mN, where m is the 
mass of a single ion. M has the value 
 

M =
×

= ×
−

−100 10
3600

2 78 10
6

8kg
s

kg s. .  

Since N = M/m we have 
 

i qM
m

= =
× ×

×
= ×

− −

−
−

320 10 2 78 10
392 10

2 27 10
19 8

25
2

. .
.

. .
C kg s

kg
A

c hc h
 

 
(c) Each ion deposits energy qV in the cup, so the energy deposited in time Δt is given by 
 

E NqV t iqV
q

t iV t= = =Δ Δ Δ .  

For Δt = 1.0 h, 
 

E = × × = ×−2 27 10 100 10 3600 817 102 3 6. . .A V s Jc hc hb g  
 
To obtain the second expression, i/q is substituted for N. 
 
28. Using 2 /F mv r=  (for the centripetal force) and 2 / 2K mv= , we can easily derive 
the relation 
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33. (a) If v is the speed of the positron then v sin φ is the component of its velocity in the 
plane that is perpendicular to the magnetic field. Here φ is the angle between the velocity 
and the field (89°). Newton’s second law yields eBv sin φ = me(v sin φ)2/r, where r is the 
radius of the orbit. Thus r = (mev/eB) sin φ. The period is given by 
 

( )
( )( )

31
10

19

2 9.11 10 kg22 3.58 10 s.
sin 1.60 10 C 0.100T

emrT
v eBφ

−
−

−

π ×ππ
= = = = ×

×
 

 
The equation for r is substituted to obtain the second expression for T. 
 
(b) The pitch is the distance traveled along the line of the magnetic field in a time interval 
of one period. Thus p = vT cos φ. We use the kinetic energy to find the speed: K m ve= 1

2
2  

means 

( )( )3 19
7

31

2 2.00 10 eV 1.60 10 J eV2 2.65 10 m s .
9.11 10 kge

Kv
m

−

−

× ×
= = = ×

×
 

 
Thus, 

( )( )7 10 42.65 10 m s 3.58 10 s cos 89 1.66 10 m .p − −= × × ° = ×  
 
(c) The orbit radius is 
 

( )( )
( )( )

31 7
3

19

9.11 10 kg 2.65 10 m s sin 89sin 1.51 10 m .
1.60 10 C 0.100 T

em vR
eB

φ
−

−
−

× × °
= = = ×

×
 

 
34. (a)  Equation 3-20 gives φ = cos−1(2/19) = 84°. 
 
(b) No, the magnetic field can only change the direction of motion of a free 
(unconstrained) particle, not its speed or its kinetic energy. 
 
(c) No, as reference to Fig. 28-11 should make clear. 
 
(d) We find v⊥ = v sin φ = 61.3 m/s, so r = mv⊥ /eB =  5.7 nm. 
 
35. (a)  By conservation of energy (using qV for the potential energy, which is converted 
into kinetic form) the kinetic energy gained in each pass is 200 eV. 
 
(b) Multiplying the part (a) result by n = 100 gives ΔK = n(200 eV) = 20.0 keV. 
 
(c) Combining Eq. 28-16 with the kinetic energy relation (n(200 eV) = mpv2/2 in this 
particular application) leads to the expression 
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r m
qB

K
m qB

Km= =
2 1 2 .  

 
For the average energy 
 

r =
× × ×

×
=

− −

−

2 8 3 10 160 10 334 10

160 10 157
0 375

6 19 27

19

. . .

. .
.

eV J eV kg

C T
m .

c hc hc h
c hb g  

 
The total distance traveled is about  
 

n2πr = (104)(2π)(0.375) = 2.4 × 102 m. 
 
38. (a) Using Eq. 28-23 and Eq. 28-18, we find 
 

( )( )
( )

19
7

osc 27

1.60 10 C 1.20T
1.83 10 Hz.

2 2 1.67 10 kgp

qBf
mπ π

−

−

×
= = = ×

×
 

 
(b) From r m v qB m k qBp P= = 2  we have  
 

( ) ( )( )( )
( )( )

2192
7

27 19

0.500m 1.60 10 C 1.20T
1.72 10 eV.

2 2 1.67 10 kg 1.60 10 J eVp

rqB
K

m

−

− −

⎡ ⎤×⎣ ⎦= = = ×
× ×

 

 
39. (a) The magnitude of the magnetic force on the wire is given by FB = iLB sin φ, 
where i is the current in the wire, L is the length of the wire, B is the magnitude of the 
magnetic field, and φ is the angle between the current and the field. In this case φ = 70°. 
Thus, 

FB = × ° =−5000 100 60 0 10 70 28 26A m T Nb gb gc h. sin . . 
 
(b) We apply the right-hand rule to the vector product F iL BB = ×  to show that the force 
is to the west. 
 
40. The magnetic force on the (straight) wire is 
 

( ) ( ) ( ) ( )sin 13.0A 1.50T 1.80m sin 35.0 20.1N.BF iBL θ= = ° =  
 
41. (a) The magnetic force on the wire must be upward and have a magnitude equal to the 
gravitational force mg on the wire. Since the field and the current are perpendicular to 
each other the magnitude of the magnetic force is given by FB = iLB, where L is the 
length of the wire. Thus, 
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( )( )
( )( )

20.0130kg 9.8m s
0.467 A.

0.620m 0.440T
mgiLB mg i
LB

= ⇒ = = =  

 
(b) Applying the right-hand rule reveals that the current must be from left to right. 
 
42. (a) From symmetry, we conclude that any x-component of force will vanish 
(evaluated over the entirety of the bent wire as shown). By the right-hand rule, a field in 
the k  direction produces on each part of the bent wire a y-component of force pointing in 
the − j  direction; each of these components has magnitude 
 

| | | | sin 30 (2.0 A)(2.0 m)(4.0 T)sin 30 8 N.yF i B= ° = ° =  
 
Therefore, the force on the wire shown in the figure is ˆ( 16j) N− . 
 
(b) The force exerted on the left half of the bent wire points in the −k  direction, by the 
right-hand rule, and the force exerted on the right half of the wire points in the +k  
direction. It is clear that the magnitude of each force is equal, so that the force (evaluated 
over the entirety of the bent wire as shown) must necessarily vanish. 
 
43. We establish coordinates such that the two sides of the right triangle meet at the 
origin, and the y = 50  cm side runs along the +y axis, while the x = 120  cm side runs 
along the +x axis. The angle made by the hypotenuse (of length 130 cm) is  
 

θ = tan–1 (50/120) = 22.6°, 
 
relative to the 120 cm side. If one measures the angle counterclockwise from the +x 
direction, then the angle for the hypotenuse is 180° – 22.6° = +157°. Since we are only 
asked to find the magnitudes of the forces, we have the freedom to assume the current is 
flowing, say, counterclockwise in the triangular loop (as viewed by an observer on the +z 
axis. We take B  to be in the same direction as that of the current flow in the hypotenuse. 
Then, with B B= = 0 0750. T,  
 

cos 0.0692T , sin 0.0288T.x yB B B Bθ θ= − = − = =  
 
(a) Equation 28-26 produces zero force when L B||  so there is no force exerted on the 
hypotenuse of length 130 cm.  
 
(b) On the 50 cm side, the Bx component produces a force i By xk,  and there is no 
contribution from the By component. Using SI units, the magnitude of the force on the y  
side is therefore 

4 00 0500 0 0692 0138. . . .A m T N.b gb gb g =  



 

  

1111

 
(c) On the 120 cm side, the By component produces a force i Bx yk,  and there is no 
contribution from the Bx component. The magnitude of the force on the x  side is also  
 

4 00 120 0 0288 0138. . . .A m T N.b gb gb g =  
 
(d) The net force is 

i B i By x x y ,k k+ = 0  
 
keeping in mind that Bx < 0 due to our initial assumptions. If we had instead assumed B  
went the opposite direction of the current flow in the hypotenuse, then Bx > 0 , but By < 0 
and a zero net force would still be the result. 
 
44. Consider an infinitesimal segment of the loop, of length ds. The magnetic field is 
perpendicular to the segment, so the magnetic force on it has magnitude dF = iB ds. The 
horizontal component of the force has magnitude  
 
 ( cos )hdF iB dsθ=  
 
and points inward toward the center of the loop. The vertical component has magnitude 
 

( sin )ydF iB dsθ=  
 
and points upward. Now, we sum the forces on all the segments of the loop. The 
horizontal component of the total force vanishes, since each segment of wire can be 
paired with another, diametrically opposite, segment. The horizontal components of these 
forces are both toward the center of the loop and thus in opposite directions. The vertical 
component of the total force is 
 

3 3

7

sin 2 sin 2 (0.018 m)(4.6 10  A)(3.4 10  T)sin 20

6.0 10  N.
vF iB ds aiBθ θ π − −

−

= = = × × °

= ×
∫ p

 

 
We note that i, B, and θ have the same value for every segment and so can be factored 
from the integral. 
 
45. The magnetic force on the wire is 
 

( ) ( )
( ) ( ) ( ) ( )

( )3 3

ˆ ˆ ˆ ˆ ˆi j k j k

ˆ ˆ0.500A 0.500m 0.0100T j 0.00300T k

ˆ ˆ2.50 10 j 0.750 10 k N.

B y z z yF iL B iL B B iL B B

− −

= × = × + = − +

⎡ ⎤= − +⎣ ⎦

= − × + ×
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which we differentiate (with respect to θ) and set the result equal to zero. This provides a 
determination of the angle: 
 

θ μ= = = °− −tan tan . .1 1 0 60 31sb g b g  
Consequently, 

( )( )
( )( )( )

2

min

0.60 1.0 kg 9.8m s
0.10T.

50 A 1.0 m cos31 0.60sin 31
B = =

° + °
 

 
(b) As shown above, the angle is ( ) ( )1 1tan tan 0.60 31 .sθ μ− −= = = °  
 
48. We use dF idL BB = × , where dL dx= i and B B Bx y= +i j . Thus,  
 

( )
( ) ( ) ( )( )3.0 2

1.0

ˆ ˆ ˆ ˆi i j k

ˆ ˆ5.0A 8.0 m mT k ( 0.35N)k.

f f

i i

x x

B x y yx x
F idL B idx B B i B dx

x dx

= × = × + =

= − ⋅ = −

∫ ∫ ∫

∫
 

 
49. The applied field has two components: Bx > 0  and Bz > 0. Considering each straight 
segment of the rectangular coil, we note that Eq. 28-26 produces a nonzero force only for 
the component of B  that is perpendicular to that segment; we also note that the equation 
is effectively multiplied by N = 20 due to the fact that this is a 20-turn coil. Since we wish 
to compute the torque about the hinge line, we can ignore the force acting on the straight 
segment of the coil that lies along the y axis (forces acting at the axis of rotation produce 
no torque about that axis). The top and bottom straight segments experience forces due to 
Eq. 28-26 (caused by the Bz component), but these forces are (by the right-hand rule) in 
the ±y directions and are thus unable to produce a torque about the y axis. Consequently, 
the torque derives completely from the force exerted on the straight segment located at x 
= 0.050 m, which has length L = 0.10 m and is shown in Figure 28-44 carrying current in 
the –y direction. Now, the Bz component will produce a force on this straight segment 
which points in the –x direction (back towards the hinge) and thus will exert no torque 
about the hinge. However, the Bx component (which is equal to B cosθ where B = 0.50 T 
and θ = 30°) produces a force equal to NiLBx that points (by the right-hand rule) in the +z 
direction. Since the action of this force is perpendicular to the plane of the coil, and is 
located a distance x away from the hinge, then the torque has magnitude 
 

( )( ) ( )( )( )( )( )cos 20 0.10 A 0.10 m 0.050 m 0.50 T cos30
0.0043 N m .

xNiLB x NiLxBτ θ= = = °
= ⋅

 

 
Since ,r Fτ = ×  the direction of the torque is –y. In unit-vector notation, the torque is 

3 ˆ( 4.3 10  N m)jτ −= − × ⋅ . 
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An alternative way to do this problem is through the use of Eq. 28-37. We do not show 
those details here, but note that the magnetic moment vector (a necessary part of Eq. 28-
37) has magnitude 

μ = =NiA 20 010 0 0050b gb gc h. .A m2  
 
and points in the –z direction. At this point, Eq. 3-30 may be used to obtain the result for 
the torque vector. 
 
50. We use 2

max max| | ,B B i r Bτ μ μ= × = = π  and note that i = qf = qv/2πr. So 
 

2 19 6 11 3
max

26

1 1 (1.60 10 C)(2.19 10 m/s)(5.29 10 m)(7.10 10 T)
2 2 2

6.58 10 N m.

qv r B qvrB
r

τ − − −

−

⎛ ⎞= = = × × × ×⎜ ⎟
⎝ ⎠

= × ⋅

p
p  

 
51. We use Eq. 28-37 where μ  is the magnetic dipole moment of the wire loop and B  is 
the magnetic field, as well as Newton’s second law. Since the plane of the loop is parallel 
to the incline the dipole moment is normal to the incline. The forces acting on the 
cylinder are the force of gravity mg, acting downward from the center of mass, the 
normal force of the incline FN, acting perpendicularly to the incline through the center of 
mass, and the force of friction f, acting up the incline at the point of contact. We take the 
x axis to be positive down the incline. Then the x component of Newton’s second law for 
the center of mass yields 

mg f masin .θ − =  
 
For purposes of calculating the torque, we take the axis of the cylinder to be the axis of 
rotation. The magnetic field produces a torque with magnitude μB sinθ, and the force of 
friction produces a torque with magnitude fr, where r is the radius of the cylinder. The 
first tends to produce an angular acceleration in the counterclockwise direction, and the 
second tends to produce an angular acceleration in the clockwise direction. Newton’s 
second law for rotation about the center of the cylinder, τ = Iα, gives 
 

fr B I− =μ θ αsin .  
 
Since we want the current that holds the cylinder in place, we set a = 0 and α = 0, and use 
one equation to eliminate f from the other. The result is .mgr Bμ=  The loop is 
rectangular with two sides of length L and two of length 2r, so its area is A = 2rL and the 
dipole moment is (2 ).NiA Ni rLμ = =  Thus, 2mgr NirLB=  and 
 

i mg
NLB

= = =
2

0 250 9 8
2 10 0 0100 0500

2 45
. .
. . .

.
kg m s

m T
A.

2b gc h
b gb gb g  

 
52. The insight central to this problem is that for a given length of wire (formed into a 
rectangle of various possible aspect ratios), the maximum possible area is enclosed when 
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the ratio of height to width is 1 (that is, when it is a square). The maximum possible value 
for the width, the problem says, is x =  4 cm (this is when the height is very close to zero, 
so the total length of wire is effectively 8 cm).  Thus, when it takes the shape of a square 
the value of x must be ¼ of 8 cm; that is, x = 2 cm when it encloses maximum area 
(which leads to a maximum torque by Eq. 28-35 and Eq. 28-37) of A = (0.020 m)2 = 
0.00040 m2.  Since N = 1 and the torque in this case is given as 4.8 × 10−4 N m⋅ , then the 
aforementioned equations lead immediately to i = 0.0030 A. 
 
53. We replace the current loop of arbitrary shape with an assembly of small adjacent 
rectangular loops filling the same area that was enclosed by the original loop (as nearly as 
possible). Each rectangular loop carries a current i flowing in the same sense as the 
original loop. As the sizes of these rectangles shrink to infinitesimally small values, the 
assembly gives a current distribution equivalent to that of the original loop. The 
magnitude of the torque Δτ  exerted by B  on the nth rectangular loop of area ΔAn is given 
by Δ Δτ θn nNiB A= sin .  Thus, for the whole assembly 
 

sin .n n
n n

NiB A NiABτ τ θ= Δ = Δ =∑ ∑  

 
54. (a) The kinetic energy gained is due to the potential energy decrease as the dipole 
swings from a position specified by angle θ to that of  being aligned (zero angle) with the 
field. Thus, 

K U U B Bi f= − = − − − °μ θ μcos cos .0b g  
 
Therefore, using SI units, the angle is 
 

θ
μ

= −
F
HG
I
KJ = −

F
HG

I
KJ = °− −cos cos .

. .
.1 11 1 0 00080

0 020 0 052
77K

B b gb g  

 
(b) Since we are making the assumption that no energy is dissipated in this process, then 
the dipole will continue its rotation (similar to a pendulum) until it reaches an angle θ = 
77° on the other side of the alignment axis. 
 
55. (a) The magnitude of the magnetic moment vector is 
 

( ) ( ) ( )2 22 2 2
1 1 2 2 7.00A 0.200m 0.300m 2.86A m .n n

n
i A r i r iμ π π π ⎡ ⎤= = + = + = ⋅⎣ ⎦∑  

 
(b) Now, 

( ) ( ) ( )2 22 2 2
2 2 1 1 7.00A 0.300m 0.200m 1.10A m .r i r iμ π π π ⎡ ⎤= − = − = ⋅⎣ ⎦  

 
56. (a) μ = = = = ⋅NAi r ip p 0.1502 2 2 60 0184m A A m2b g b g. . .  
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(a) By using the right-hand rule, we see that μ  is in the –y direction. Thus, we have 
 
 3 2 2ˆ ˆ ˆ( )( j) (3)(2.00 A)(4.00 10  m ) j (0.0240 A m )jNiAμ −= − = − × = − ⋅ . 
 
The corresponding orientation energy is  
 

2 3 5( 0.0240 A m )( 3.00 10  T) 7.20 10  Jy yU B Bμ μ − −= − ⋅ = − = − − ⋅ − × = − × . 
 
(b) Using the fact that ˆ ˆ ˆ ˆ ˆ ˆ ˆj i 0, j j 0, and j k i,⋅ = × = × =  the torque on the coil is 
 

 2 3 2 3

5 5

ˆ ˆi k
ˆ ˆ( 0.0240 A m )( 4.00 10 T)i ( 0.0240 A m )(2.00 10 T)k

ˆ ˆ(9.60 10 N m)i (4.80 10 N m)k.

y z y xB B Bτ μ μ μ
− −

− −

= × = −

= − ⋅ − × − − ⋅ ×

= × ⋅ + × ⋅

 

 
Note: The orientation energy is highest when μ  is in the opposite direction of ,B  and 
lowest when μ  lines up with B . 
 
62. Looking at the point in the graph (Fig. 28-50(b)) corresponding to i2 = 0 (which 
means that coil 2 has no magnetic moment) we are led to conclude that the magnetic 
moment of coil 1 must be 5 2

1 2.0 10 A m .μ −= × ⋅  Looking at the point where the line 
crosses the axis (at i2 = 5.0 mA) we conclude (since the magnetic moments cancel there) 
that the magnitude of coil 2’s moment must also be 5 2

2 2.0 10 A mμ −= × ⋅  when 

2 0.0050 A,i =  which means (Eq. 28-35)  
 

5 2
3 22

2 2
2

2.0 10 A m 4.0 10 m
0.0050 A

N A
i
μ −

−× ⋅
= = = × . 

 
Now the problem has us consider the direction of coil 2’s current changed so that the net 
moment is the sum of two (positive) contributions, from coil 1 and coil 2, specifically for 
the case that i2 = 0.007 A.  We find that total moment is  
 

μ = (2.0 × 10−5 A·m2) + (N2A2 i2) = 4.8 × 10−5 A·m2. 
 
63. The magnetic dipole moment is μ μ= −0 60 080. .i je j , where  

 
μ = NiA = Niπr2 = 1(0.20 A)π(0.080 m)2 = 4.02 × 10–4 A·m2. 

 
Here i is the current in the loop, N is the number of turns, A is the area of the loop, and r 
is its radius. 
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(a) The torque is 
 

τ μ μ

μ

μ

= × = − × +

= × − × − ×

= − + −

B 0 60 080 0 25 0 30

0 60 0 30 080 0 25 080 0 30

018 0 20 0 24

. . . .

. . . . . .

. . . .

i j i k

i k j i j k

j k i

e j e j
b gb ge j b gb ge j b gb ge j  

 
Here i k j, j i k,× = − × = −  and j k i× =  are used. We also use i i = 0× . Now, we 
substitute the value for μ to obtain 
 

( )4 4 4ˆ ˆ ˆ9.7 10 i 7.2 10 j 8.0 10 k N m.τ − − −= − × − × + × ⋅  

 
(b) The orientation energy of the dipole is given by 
 

U B= − ⋅ = − − ⋅

= − = − = − × −

μ μ

μ μ

0 60 0 80 0 25

0 60 0 25 015 6 0 10 4

. . .

. . . .

i j i + 0.30k

J.

e j e j
b gb g

 

 
Here , ,i i i k j i = 0,⋅ = ⋅ = ⋅1 0  and j k⋅ = 0  are used. 
 
64. Eq. 28-39 gives U = Bμ− ⋅  = −μB cosφ, so at φ = 0 (corresponding to the lowest 
point on the graph in Fig. 28-51) the mechanical energy is  
 

K + U = Ko + (−μB) = 6.7 × 10−4 J + (−5 × 10−4 J) = 1.7 × 10−4 J. 
 
The turning point occurs where K = 0, which implies Uturn = 1.7 × 10−4 J.  So the angle 
where this takes place is given by 

 
4

1 1.7 10  Jcos 110
B

φ
μ

−
− ⎛ ⎞×

= − = °⎜ ⎟
⎝ ⎠

 

 
where we have used the fact (see above) that  μB = 5 × 10−4 J. 
 
65. If N closed loops are formed from the wire of length L, the circumference of each 
loop is L/N, the radius of each loop is R = L/2πN, and the area of each loop is 

( )22 2 22 4 .A R L N L Nπ π π π= = =   
 
(a) For maximum torque, we orient the plane of the loops parallel to the magnetic field, 
so the dipole moment is perpendicular (i.e., at a 90° angle) to the field.  
 
(b) The magnitude of the torque is then 
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( )( )( )
3

28 3 19 8

0.65 T 2.84 10 .
8.47 10 m 1.60 10 C 1.69 10 mc

E B
E neρ

−
− −

= = = ×
× × × Ω⋅

 

 
79. (a) Since K = qV we have ( )1

2 as 2 ,p pK K q Kα α= = or / 0.50.pK Kα =  
 
(b) Similarly, 2 ,  / 0.50.d dq K K Kα α= =  
 
(c) Since r mK qB mK q= ∝2 , we have 
 

( )
( )
2.00u

10 2 cm 14 cm.
1.00u

p p pd d
d p

p p d p

q r Km Kr r
m K q K

= = = =  

 
(d) Similarly, for the alpha particle, we have 
 

 ( )
( ) ( )

4.00u
10 2 cm 14 cm.

1.00u 2 2
p p p

p p

q r erKm Kr
m K q K e

αα α
α

α α

= = = =  

 
80. (a) The largest value of force occurs if the velocity vector is perpendicular to the field. 
Using Eq. 28-3,  
 

FB,max = |q| vB sin (90°) = ev B = (1.60 × 10– 19 C) (7.20 × 106 m/s) (83.0 × 10– 3 T) 
= 9.56 × 10– 14 N. 

 
(b) The smallest value occurs if they are parallel: FB,min = |q| vB sin (0) = 0. 
 
(c) By Newton’s second law, a = FB/me = |q| vB sin θ /me, so the angle θ between v  and  
B  is 
 

θ =
F
HG
I
KJ =

× ×

× × ×

L
N
MM

O
Q
PP = °− −

−

− −
sin sin

. .

. . .
. .1 1

31 14 2

16 6 3

911 10 4 90 10

160 10 7 20 10 830 10
0 267m a

q vB
e

kg m s

C m s T
c hd i

c hc hc h  

 
81. The contribution to the force by the magnetic field ( )ˆ ˆi ( 0.020 T)ixB B= = −  is given 

by Eq. 28-2: 
 

( ) ( ) ( )( )
( )

ˆ ˆ ˆ ˆ ˆ ˆ17000i i 11000j i 7000k i

ˆ ˆ220k 140j

B x x xF qv B q B B B

q

= × = × + − × + ×

= − −
 

 



CHAPTER 28 1126 

 
( ) ( ) ( ) ( )( )

)( ( )( ) ( ) ( )( )(
( )( ) ( ) ( )( ) ( )( ) ( )( )( ) )

( ) ( )

19

21 22

ˆ ˆ ˆi j k

ˆ1.60 10 4 0.008 6 0.004 i+

ˆ ˆ6 0.002 2 0.008 j 2 0.004 4 0.002 k

ˆ ˆ1.28 10 i 6.41 10 j

y z z y z x x z x y y xF qv B e v B v B v B v B v B v B

−

− −

= × = + − + − + −

= × − − −

− − − + − − −

= × + ×

 

 
with SI units understood. 
 
(b) By definition of the cross product, v F⊥ . This is easily verified by taking the dot 
(scalar) product of v  with the result of part (a), yielding zero, provided care is taken not 
to introduce any round-off error.  
 
(c) There are several ways to proceed. It may be worthwhile to note, first, that if Bz were 
6.00 mT instead of 8.00 mT then the two vectors would be exactly antiparallel. Hence, 
the angle θ between B  and v  is presumably “close” to 180°. Here, we use Eq. 3-20: 
 

 1 1 68θ cos cos 173
| || | 56 84
v B
v B

− −⎛ ⎞⋅ −⎛ ⎞
= = = °⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
. 

 
86. (a) We are given 5ˆ ˆi (6 10 T)ixB B −= = × , so that v B v By x× = − k  where vy = 4×104 m/s. 

We note that the magnetic force on the electron is − −e v By xb ge jk  and therefore points in 

the +k  direction, at the instant the electron enters the field-filled region. In these terms, 
Eq. 28-16 becomes 

r
m v
e B

e y

x

= = 0 0038. m.  

 
(b) One revolution takes T = 2πr/vy = 0.60 μs, and during that time the “drift” of the 
electron in the x direction (which is the pitch of the helix) is Δx = vxT = 0.019 m where vx 
= 32 × 103 m/s. 
 
(c) Returning to our observation of force direction made in part (a), we consider how this 
is perceived by an observer at some point on the –x axis. As the electron moves away 
from him, he sees it enter the region with positive vy (which he might call “upward’’) but 
“pushed” in the +z direction (to his right). Hence, he describes the electron’s spiral as 
clockwise. 
 
 
 
 
 


