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Chapter 27 
 
 
1. (a) Let i be the current in the circuit and take it to be positive if it is to the left in R1. 
We use Kirchhoff’s loop rule: ε1 – iR2 – iR1 – ε2 = 0. We solve for i: 
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A positive value is obtained, so the current is counterclockwise around the circuit. 
 
If i is the current in a resistor R, then the power dissipated by that resistor is given by 

2P i R= .  
 
(b) For R1, P1 = 2

1i R = (0.50 A)2(4.0 Ω) = 1.0 W,  
 
(c) and for R2, P2 = 2

2i R =  (0.50 A)2 (8.0 Ω) = 2.0 W. 
 
If i is the current in a battery with emf ε, then the battery supplies energy at the rate P =iε 
provided the current and emf are in the same direction. The battery absorbs energy at the 
rate P = iε if the current and emf are in opposite directions.  
 
(d) For ε1, P1 = 1iε =  (0.50 A)(12 V) = 6.0 W  
 
(e) and for ε2, P2 = 2iε =  (0.50 A)(6.0 V) = 3.0 W.  
 
(f) In battery 1 the current is in the same direction as the emf. Therefore, this battery 
supplies energy to the circuit; the battery is discharging.  
 
(g) The current in battery 2 is opposite the direction of the emf, so this battery absorbs 
energy from the circuit. It is charging. 
 
2. The current in the circuit is  
 

i = (150 V – 50 V)/(3.0 Ω + 2.0 Ω) = 20 A. 
 
So from VQ + 150 V – (2.0 Ω)i = VP, we get VQ = 100 V + (2.0 Ω)(20 A) –150 V = –10 V. 
 
3. (a) The potential difference is V = ε + ir = 12 V + (50 A)(0.040 Ω) = 14 V. 
 
(b) P = i2r = (50 A)2(0.040 Ω) = 1.0×102 W. 
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(c) P' = iV = (50 A)(12 V) = 6.0×102 W. 
 
(d) In this case V = ε – ir = 12 V – (50 A)(0.040 Ω) = 10 V. 
 
(e) Pr = i2r =(50 A)2(0.040 Ω) = 1.0×102 W. 
 
4. (a) The loop rule leads to a voltage-drop across resistor 3 equal to 5.0 V (since the total 
drop along the upper branch must be 12 V).  The current there is consequently  
i = (5.0 V)/(200 Ω) = 25 mA.  Then the resistance of resistor 1 must be (2.0 V)/i  = 80 Ω. 
 
(b) Resistor 2 has the same voltage-drop as resistor 3; its resistance is 200 Ω. 
 
5. The chemical energy of the battery is reduced by ΔE = qε, where q is the charge that 
passes through in time Δt = 6.0 min, and ε is the emf of the battery. If i is the current, 
then q = i Δt and  
 

ΔE = iε Δt = (5.0 A)(6.0 V) (6.0 min) (60 s/min) = 1.1 × 104 J. 
 
We note the conversion of time from minutes to seconds. 
 
6. (a) The cost is (100 W · 8.0 h/2.0 W · h) ($0.80) = $3.2 × 102. 
 
(b) The cost is (100 W · 8.0 h/103 W · h) ($0.06) = $0.048 = 4.8 cents. 
 
7. (a) The energy transferred is 
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(b) The amount of thermal energy generated is 
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(c) The difference between U and U', which is equal to 13 J, is the thermal energy that is 
generated in the battery due to its internal resistance. 
 
8. If P is the rate at which the battery delivers energy and Δt is the time, then ΔE = P Δt is 
the energy delivered in time Δt. If q is the charge that passes through the battery in time 
Δt and ε is the emf of the battery, then ΔE = qε. Equating the two expressions for ΔE and 
solving for Δt, we obtain 
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(b) The simultaneous solution also gives r2 = 0.30 Ω. 
 
15. Let the emf be V. Then V = iR = i'(R + R'), where i = 5.0 A, i' = 4.0 A, and R' = 2.0 Ω. 
We solve for R: 

(4.0 A) (2.0 ) 8.0 .
5.0 A 4.0 A

i RR
i i
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= = = Ω
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16. (a) Let the emf of the solar cell be ε and the output voltage be V. Thus, 
 

V ir V
R

r= − = − FHG
I
KJε ε  

for both cases. Numerically, we get  
 

0.10 V = ε – (0.10 V/500 Ω)r 
   0.15 V = ε – (0.15 V/1000 Ω)r. 

We solve for ε and r.   
 
(a) r = 1.0×103 Ω. 
 
(b) ε = 0.30 V. 
 
(c) The efficiency is 
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17. To be as general as possible, we refer to the individual emfs as ε1 and ε2 and wait 
until the latter steps to equate them (ε1 = ε2 = ε). The batteries are placed in series in such 
a way that their voltages add; that is, they do not “oppose” each other. The total 
resistance in the circuit is therefore Rtotal = R + r1 + r2 (where the problem tells us r1 > r2), 
and the “net emf” in the circuit is ε1 + ε2. Since battery 1 has the higher internal resistance, 
it is the one capable of having a zero terminal voltage, as the computation in part (a) 
shows. 
 
(a) The current in the circuit is 

i
r r R

=
+

+ +
ε ε1 2

1 2

,  

 
and the requirement of zero terminal voltage leads to 1 1irε = , or 
 

2 1 1 2

1

(12.0 V)(0.016 ) (12.0 V)(0.012 ) 0.0040 
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− Ω − Ω
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Note that R = r1 – r2 when we set ε1 = ε2. 
 
(b) As mentioned above, this occurs in battery 1. 
 
18. The currents i1, i2 and i3 are obtained from Eqs. 27-18 through 27-20: 
 

1 2 3 2 3
1

1 2 2 3 1 3

1 3 2 1 2
2

1 2 2 3 1 3

( ) (4.0V)(10 5.0 ) (1.0V)(5.0 ) 0.275 A,
(10 )(10 ) (10 )(5.0 ) (10 )(5.0 )

( ) (4.0 V)(5.0 ) (1.0 V)(10 5.0 )
(10 )(10 ) (10 )(5.0 ) (10 )(5.0 )

R R Ri
R R R R R R
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+ − Ω + Ω − Ω
= = =
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3 2 1
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0.025A 0.275A 0.250A .i i i= − = − = −

 

 
Vd – Vc can now be calculated by taking various paths. Two examples: from Vd – i2R2 = 
Vc we get  

Vd – Vc = i2R2 = (0.0250 A) (10 Ω) = +0.25 V; 
 
from Vd + i3R3 + ε2 = Vc we get  
 

Vd – Vc = i3R3 – ε2 = – (– 0.250 A) (5.0 Ω) – 1.0 V = +0.25 V. 
 
19. (a) Since Req < R, the two resistors (R = 12.0 Ω and Rx) must be connected in parallel: 
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We solve for Rx: Rx = ReqR/(R – Req) = (3.00 Ω)(12.0 Ω)/(12.0 Ω – 3.00 Ω) = 4.00 Ω. 
 
(b) As stated above, the resistors must be connected in parallel. 
 
20. Let the resistances of the two resistors be R1 and R2, with R1 < R2. From the 
statements of the problem, we have 
 

R1R2/(R1 + R2) = 3.0 Ω and R1 + R2 = 16 Ω. 
 
So R1 and R2 must be 4.0 Ω and 12 Ω, respectively. 
 
(a) The smaller resistance is R1 = 4.0 Ω. 
 
(b) The larger resistance is R2 = 12 Ω. 
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21. The potential difference across each resistor is V = 25.0 V. Since the resistors are 
identical, the current in each one is i = V/R = (25.0 V)/(18.0 Ω) = 1.39 A. The total 
current through the battery is then itotal = 4(1.39 A) = 5.56 A. One might alternatively use 
the idea of equivalent resistance; for four identical resistors in parallel the equivalent 
resistance is given by 

1 1 4
R R Req

= =∑ .  

 
When a potential difference of 25.0 V is applied to the equivalent resistor, the current 
through it is the same as the total current through the four resistors in parallel. Thus  
 

itotal = V/Req = 4V/R = 4(25.0 V)/(18.0 Ω) = 5.56 A. 
 
22. (a) Req (FH) = (10.0 Ω)(10.0 Ω)(5.00 Ω)/[(10.0 Ω)(10.0 Ω) + 2(10.0 Ω)(5.00 Ω)] = 
2.50 Ω. 
 
(b) Req (FG) = (5.00 Ω) R/(R + 5.00 Ω), where  
 

R = 5.00 Ω + (5.00 Ω)(10.0 Ω)/(5.00 Ω + 10.0 Ω) = 8.33 Ω. 
 
So Req (FG) = (5.00 Ω)(8.33 Ω)/(5.00 Ω + 8.33 Ω) = 3.13 Ω. 
 
23. Let i1 be the current in R1 and take it to be positive if it is to the right. Let i2 be the 
current in R2 and take it to be positive if it is upward.  
 
(a) When the loop rule is applied to the lower loop, the result is 
 

2 1 1 0i Rε − = . 
The equation yields 

i
R1

2

1

50 0 050= = =
ε . . V
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 A.

Ω
 

 
(b) When it is applied to the upper loop, the result is 
 

ε ε ε1 2 3 2 2 0− − − =i R .  
The equation gives 
 

1 2 3
2

2

6.0 V 5.0 V 4.0 V 0.060 A
50

i
R

ε ε ε− − − −
= = = −

Ω
, 

 
or 2| | 0.060 A.i = The negative sign indicates that the current in R2 is actually downward.  
 
(c) If Vb is the potential at point b, then the potential at point a is Va = Vb + ε3 + ε2, so  
 



CHAPTER 27 1066 

Va – Vb = ε3 + ε2 = 4.0 V + 5.0 V = 9.0 V. 
 
24. We note that two resistors in parallel, R1 and R2, are equivalent to 
 

1 2
12

12 1 2 1 2

1 1 1 .R RR
R R R R R

= + ⇒ =
+

 

 
This situation consists of a parallel pair that are then in series with a single R3 = 2.50 Ω 
resistor. Thus, the situation has an equivalent resistance of 
 

eq 3 12
(4.00 ) (4.00 )2.50 4.50 .
4.00 4.00

R R R Ω Ω
= + = Ω + = Ω

Ω + Ω
 

 
25. Let r be the resistance of each of the narrow wires. Since they are in parallel the 
resistance R of the composite is given by 
 

1 9
R r

= ,  

 
or R = r/9. Now 24 /r dρ π=  and 24 /R Dρ π= , where ρ is the resistivity of copper. 
Note that A = πd 2/4 was used for the cross-sectional area of a single wire, and a similar 
expression was used for the cross-sectional area of the thick wire. Since the single thick 
wire is to have the same resistance as the composite, 
 

 2 2

4 4 3 .D d
D d
ρ ρ

π π
= ⇒ =

9
 

 
26. The part of R0 connected in parallel with R is given by R1 = R0x/L, where L = 10 cm. 
The voltage difference across R is then VR = εR'/Req, where R' = RR1/(R + R1) and  
 

Req = R0(1 – x/L) + R'. 
Thus, 
 

( )
( ) ( )

( )
( )

2 22
1 1 0

22
0 1 1 0

1001 ,
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R
R

RR R R R x RVP
R R R x L RR R R R R x x

ε ε⎛ ⎞+
= = =⎜ ⎟⎜ ⎟− + + + −⎝ ⎠

 

 
where x is measured in cm. 
 
27. Since the potential differences across the two paths are the same, 1 2V V=  ( 1V  for the 
left path, and 2V  for the right path), we have 1 1 2 2i R i R= , where 1 2 5000 Ai i i= + = . With 

/R L Aρ=  (see Eq. 26-16), the above equation can be rewritten as 
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1 2 2 1( / )i d i h i i d h= ⇒ = . 
 
With / 0.400d h = , we get 1 3571 Ai =  and 2 1429 Ai = . Thus, the current through the 
person is 1 3571 Ai = , or approximately 3.6 kA . 
 
28. Line 1 has slope R1 = 6.0 kΩ.  Line 2 has slope R2 = 4.0 kΩ.  Line 3 has slope R3 = 
2.0 kΩ.  The parallel pair equivalence is R12 = R1R2/(R1+R2) = 2.4 kΩ.  That in series with 
R3 gives an equivalence of  
 

123 12 3 2.4 k 2.0 k 4.4 k .R R R= + = Ω + Ω = Ω  
 
The current through the battery is therefore 123/i Rε= = (6 V)/(4.4 kΩ) and the voltage 
drop across R3 is (6 V)(2 kΩ)/(4.4 kΩ) = 2.73 V.  Subtracting this (because of the loop 
rule) from the battery voltage leaves us with the voltage across R2.  Then Ohm’s law 
gives the current through R2: (6 V – 2.73 V)/(4 kΩ) = 0.82 mA . 
 
29. (a)  The parallel set of three identical R2 = 18 Ω resistors reduce to R= 6.0 Ω, which is 
now in series with the R1 = 6.0 Ω resistor at the top right, so that the total resistive load 
across the battery is R' = R1 + R = 12 Ω.  Thus, the current through R' is (12V)/R' = 1.0 A, 
which is the current through R.  By symmetry, we see one-third of that passes through 
any one of those 18 Ω resistors; therefore, i1 = 0.333 A. 
 
(b) The direction of  i1 is clearly rightward. 
 
(c) We use Eq. 26-27:  P = i2R' = (1.0 A)2(12 Ω) = 12 W.  Thus, in 60 s, the energy 
dissipated is (12 J/s)(60 s) = 720 J. 
 
30. Using the junction rule (i3 = i1 + i2) we write two loop rule equations: 
 

10.0 V – i1R1 – (i1 + i2) R3 = 0 
 

5.00 V – i2R2 – (i1 + i2) R3 = 0. 
 
(a) Solving, we find i2 = 0, and 
 
(b) i3 = i1 + i2 = 1.25 A (downward, as was assumed in writing the equations as we did). 
 
31. (a) We reduce the parallel pair of identical 2.0 Ω resistors (on the right side) to R' = 
1.0 Ω, and we reduce the series pair of identical 2.0 Ω resistors (on the upper left side) to 
R'' = 4.0 Ω. With R denoting the 2.0 Ω resistor at the bottom (between V2 and V1), we 
now have three resistors in series, which are equivalent to  
 

7.0R R R′ ′′+ + = Ω  
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across which the voltage is 7.0 V (by the loop rule, this is 12 V – 5.0 V), implying that 
the current is 1.0 A (clockwise). Thus, the voltage across R' is (1.0 A)(1.0 Ω) = 1.0 V, 
which means that (examining the right side of the circuit) the voltage difference between 
ground and V1 is 12 – 1 = 11 V. Noting the orientation of the battery, we conclude 

1 11 VV = − . 
 
(b) The voltage across R'' is (1.0 A)(4.0 Ω) = 4.0 V, which means that (examining the left 
side of the circuit) the voltage difference between ground and V2 is 5.0 + 4.0 = 9.0 V. 
Noting the orientation of the battery, we conclude V2 = –9.0 V. This can be verified by 
considering the voltage across R and the value we obtained for V1. 
 
32. (a) For typing convenience, we denote the emf of battery 2 as V2 and the emf of 
battery 1 as V1.   The loop rule (examining the left-hand loop) gives V2 + i1 R1  – V1 = 0.  
Since V1 is held constant while V2 and i1 vary, we see that this expression (for large 
enough V2) will result in a negative value for i1, so the downward sloping line (the line 
that is dashed in Fig. 27-43(b)) must represent i1.  It appears to be zero when V2 = 6 V.  
With i1  = 0, our loop rule gives V1 = V2, which implies that V1 = 6.0 V. 
 
(b) At V2 = 2 V (in the graph) it appears that i1 = 0.2 A.  Now our loop rule equation (with 
the conclusion about V1 found in part (a)) gives R1 = 20 Ω. 
 
(c) Looking at the point where the upward-sloping i2 line crosses the axis (at V2 = 4 V), 
we note that i1 = 0.1 A there and that the loop rule around the right-hand loop should give 
 

V1 – i1 R1 = i1 R2 
 
when  i1 = 0.1 A  and i2 = 0. This leads directly to R2 = 40 Ω. 
 
33. First, we note in V4, that the voltage across R4 is equal to the sum of the voltages 
across R5 and R6:  

V4 = i6(R5 +R6)= (1.40 A)(8.00 Ω + 4.00 Ω) = 16.8 V. 
 
The current through R4 is then equal to i4 = V4/R4 = 16.8 V/(16.0 Ω) = 1.05 A. 
 
By the junction rule, the current in R2 is  
 

i2 = i4 + i6 =1.05 A + 1.40 A = 2.45 A, 
 
so its voltage is V2 = (2.00 Ω)(2.45 A) = 4.90 V. 
 
The loop rule tells us the voltage across R3 is V3 = V2 + V4 = 21.7 V (implying that the 
current through it is i3 = V3/(2.00 Ω) = 10.85 A). 
 
The junction rule now gives the current in R1 as i1 = i2 + i3 = 2.45 A + 10.85 A = 13.3 A, 
implying that the voltage across it is V1 = (13.3 A)(2.00 Ω) = 26.6 V. Therefore, by the 
loop rule,  
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ε = V1 + V3 = 26.6 V + 21.7 V = 48.3 V. 
 
34. (a) By the loop rule, it remains the same.  This question is aimed at student 
conceptualization of voltage; many students apparently confuse the concepts of voltage 
and current and speak of “voltage going through” a resistor – which would be difficult to 
rectify with the conclusion of this problem. 
 
(b) The loop rule still applies, of course, but (by the junction rule and Ohm’s law) the 
voltages across R1 and R3 (which were the same when the switch was open) are no longer 
equal.  More current is now being supplied by the battery, which means more current is in 
R3, implying its voltage drop has increased (in magnitude).  Thus, by the loop rule (since 
the battery voltage has not changed) the voltage across R1 has decreased a corresponding 
amount.  When the switch was open, the voltage across R1 was 6.0 V (easily seen from 
symmetry considerations).  With the switch closed, R1 and R2 are equivalent (by Eq. 27-
24) to 3.0 Ω, which means the total load on the battery is 9.0 Ω.  The current therefore is 
1.33 A, which implies that the voltage drop across R3 is 8.0 V.  The loop rule then tells us 
that the voltage drop across R1 is 12 V – 8.0 V = 4.0 V.  This is a decrease of 2.0 volts 
from the value it had when the switch was open. 
 
35. (a) The symmetry of the problem allows us to use i2 as the current in both of the R2 
resistors and i1 for the R1 resistors. We see from the junction rule that i3 = i1 – i2. There 
are only two independent loop rule equations: 
 

( )
2 2 1 1

1 1 1 2 3

0
2 0

i R i R
i R i i R

ε
ε

− − =

− − − =
 

 
where in the latter equation, a zigzag path through the bridge has been taken. Solving, we 
find i1 = 0.002625 A, i2 = 0.00225 A and i3 = i1 – i2 = 0.000375 A. Therefore, VA – VB = 
i1R1 = 5.25 V. 
 
(b) It follows also that VB – VC = i3R3 = 1.50 V. 
 
(c) We find VC – VD = i1R1 = 5.25 V. 
 
(d) Finally, VA – VC = i2R2 = 6.75 V. 
 
36. (a) Using the junction rule (i1 = i2 + i3) we write two loop rule equations: 
 

ε

ε
1 2 2 2 3 1

2 3 3 2 3 1

0

0

− − + =

− − + =

i R i i R

i R i i R
b g
b g .

 

 
Solving, we find i2 = 0.0109 A (rightward, as was assumed in writing the equations as we 
did), i3 = 0.0273 A (leftward), and i1 = i2 + i3 = 0.0382 A (downward). 
 
(b) The direction is downward. See the results in part (a). 
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Clearly the only physically interesting solution to this is n = 8. Thus, there are eight 
resistors in parallel (as well as that resistor in series shown toward the bottom) in Fig. 27-
52. 
 
43. Let the resistors be divided into groups of n resistors each, with all the resistors in the 
same group connected in series. Suppose there are m such groups that are connected in 
parallel with each other. Let R be the resistance of any one of the resistors. Then the 
equivalent resistance of any group is nR, and Req, the equivalent resistance of the whole 
array, satisfies 

1 1
1R nR

m
nR

m

eq

= =∑ .  

 
Since the problem requires Req = 10 Ω = R, we must select n = m. Next we make use of 
Eq. 27-16. We note that the current is the same in every resistor and there are n · m = n2 
resistors, so the maximum total power that can be dissipated is Ptotal = n2P, where 

1.0 WP =  is the maximum power that can be dissipated by any one of the resistors. The 
problem demands Ptotal ≥ 5.0P, so n2 must be at least as large as 5.0. Since n must be an 
integer, the smallest it can be is 3. The least number of resistors is n2 = 9. 
 
44. (a) Resistors R2, R3, and R4 are in parallel. By finding a common denominator and 
simplifying, the equation 1/R = 1/R2 + 1/R3 + 1/R4 gives an equivalent resistance of 
 

2 3 4

2 3 2 4 3 4

(50.0 )(50.0 )(75.0 )
(50.0 )(50.0 ) (50.0 )(75.0 ) (50.0 )(75.0 )

18.8 .

R R RR
R R R R R R

Ω Ω Ω
= =

+ + Ω Ω + Ω Ω + Ω Ω
= Ω

 

 
Thus, considering the series contribution of resistor R1, the equivalent resistance for the 
network is Req = R1 + R = 100 Ω + 18.8 Ω = 118.8 Ω ≈ 119 Ω. 
 
(b) i1 = ε/Req = 6.0 V/(118.8 Ω) = 5.05 × 10–2 A.  
 
(c) i2 = (ε – V1)/R2 = (ε – i1R1)/R2 = [6.0V – (5.05 × 10–2 A)(100Ω)]/50 Ω = 1.90 × 10–2 A.  
 
(d) i3 = (ε – V1)/R3 = i2R2/R3 = (1.90 × 10–2 A)(50.0 Ω/50.0 Ω) = 1.90 × 10–2 A.  
 
(e) i4 = i1 – i2 – i3 = 5.05 × 10–2 A – 2(1.90 × 10–2 A) = 1.25 × 10–2 A. 
 
45. (a) We note that the R1 resistors occur in series pairs, contributing net resistance 2R1 
in each branch where they appear. Since ε2 = ε3 and R2 = 2R1, from symmetry we know 
that the currents through ε2 and ε3 are the same: i2 = i3 = i. Therefore, the current through 
ε1 is i1 = 2i. Then from Vb – Va = ε2 – iR2 = ε1 + (2R1)(2i) we get 
 

( )
2 1

1 2

4.0 V 2.0 V 0.33A.
4 4 1.0 2.0

i
R R
ε ε− −

= = =
+ Ω + Ω
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Therefore, the current through ε1 is i1 = 2i = 0.67 A. 
 
(b) The direction of i1 is downward.  
 
(c) The current through ε2 is i2 = 0.33 A. 
 
(d) The direction of i2 is upward. 
 
(e) From part (a), we have i3 = i2 = 0.33 A. 
 
(f) The direction of i3 is also upward. 
 
(g) Va – Vb = –iR2 + ε2 = –(0.333 A)(2.0 Ω) + 4.0 V = 3.3 V. 
 
46. (a) When R3 = 0 all the current passes through R1 and R3 and avoids R2 altogether.  
Since that value of the current (through the battery) is 0.006 A (see Fig. 27-55(b)) for R3 
= 0 then (using Ohm’s law)  
 

R1 = (12 V)/(0.006 A) =  2.0×103 Ω. 
 
(b) When R3 = ∞  all the current passes through R1 and R2 and avoids R3 altogether.  Since 
that value of the current (through the battery) is 0.002 A (stated in problem) for R3 = ∞ 
then (using Ohm’s law)  
 

R2 = (12 V)/(0.002 A) – R1  =  4.0×103 Ω. 
 
47. (a) The copper wire and the aluminum sheath are connected in parallel, so the 
potential difference is the same for them. Since the potential difference is the product of 
the current and the resistance, iCRC = iARA, where iC is the current in the copper, iA is the 
current in the aluminum, RC is the resistance of the copper, and RA is the resistance of the 
aluminum. The resistance of either component is given by R = ρL/A, where ρ is the 
resistivity, L is the length, and A is the cross-sectional area. The resistance of the copper 
wire is RC = ρCL/πa2, and the resistance of the aluminum sheath is RA = ρAL/π(b2 – a2). 
We substitute these expressions into iCRC = iARA, and cancel the common factors L and π 
to obtain 

2 2 2 .C C A Ai i
a b a
ρ ρ

=
−

 

 
We solve this equation simultaneously with i = iC + iA, where i is the total current. We 
find 

i r i
r r rC

C C

A C C C A

=
− +

2

2 2 2

ρ
ρ ρc h  

and 
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53. The current in R2 is i. Let i1 be the current in R1 and take it to be downward. 
According to the junction rule the current in the voltmeter is i – i1 and it is downward. We 
apply the loop rule to the left-hand loop to obtain 
 

ε − − − =iR i R ir2 1 1 0.  
 
We apply the loop rule to the right-hand loop to obtain 
 

i R i i RV1 1 1 0− − =b g .  
 
The second equation yields 

i R R
R

iV

V

=
+1

1.  

 
We substitute this into the first equation to obtain 
 

ε −
+ +

+ =
R r R R

R
i R iV

V

2 1
1 1 1 0b gb g .  

This has the solution 

i R
R r R R R R

V

V V
1

2 1 1

=
+ + +

ε
b gb g .  

 
The reading on the voltmeter is 
 

( ) ( )
( ) ( ) ( )

( )( ) ( )( )
3

1
1 1 3 3

2 1 1

3.0V 5.0 10 250

300 100 250 5.0 10 250 5.0 10

1.12 V.

V

V V

R Ri R
R r R R R R

ε × Ω Ω
= =

+ + + Ω + Ω Ω + × Ω + Ω × Ω

=
 

The current in the absence of the voltmeter can be obtained by taking the limit as RV 
becomes infinitely large. Then 
 

( )( )1
1 1

1 2

3.0V 250
1.15V.

250 300 100
Ri R

R R r
ε Ω

= = =
+ + Ω + Ω + Ω

 

 
The fractional error is (1.12 – 1.15)/(1.15) = –0.030, or –3.0%. 
 
54. (a) ε = V + ir = 12 V + (10.0 A) (0.0500 Ω) = 12.5 V. 
 
(b) Now ε = V' + (imotor + 8.00 A)r, where  
 

V' = i'ARlight = (8.00 A) (12.0 V/10 A) = 9.60 V.  
Therefore, 
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motor
12.5V 9.60V8.00A 8.00A 50.0A.

0.0500
Vi

r
ε ′− −

= − = − =
Ω

 

 
55. Let i1 be the current in R1 and R2, and take it to be positive if it is toward point a in R1. 
Let i2 be the current in Rs and Rx, and take it to be positive if it is toward b in Rs. The loop 
rule yields (R1 + R2)i1 – (Rx + Rs)i2 = 0. Since points a and b are at the same potential, 
i1R1 = i2Rs. The second equation gives i2 = i1R1/Rs, which is substituted into the first 
equation to obtain 

( ) ( ) 21
1 2 1 1

1

.s
x s x

s

R RRR R i R R i R
R R

+ = + ⇒ =  

 
56. The currents in R and RV are i and i' – i, respectively. Since V = iR = (i' – i)RV we 
have, by dividing both sides by V, 1 = (i' /V – i/V)RV = (1/R' – 1/R)RV. Thus, 
 

1 1 1    .V

V V

RRR
R R R R R

′= − ⇒ =
′ +

 

 

The equivalent resistance of the circuit is eq 0 0
V

A A
V

RRR R R R R R
R R

′= + + = + +
+

. 

 
(a) The ammeter reading is 
 

( ) ( ) ( ) ( )eq 0

2

12.0V
3.00 100 300 85.0 300 85.0

7.09 10 A.
A V V

i
R R R R R R R
ε ε

−

′ = = =
+ + + Ω + Ω + Ω Ω Ω + Ω

= ×

 

 
(b) The voltmeter reading is  
 

V =ε – i' (RA + R0) = 12.0 V – (0.0709 A) (103.00 Ω) = 4.70 V. 
 
(c) The apparent resistance is R' = V/i' = 4.70 V/(7.09 × 10–2 A) = 66.3 Ω.  
 
(d) If RV is increased, the difference between R and R′  decreases. In fact, R R′ →  as 

VR → ∞ . 
 
57. Here we denote the battery emf as V.  Then the requirement stated in the problem that 
the resistor voltage be equal to the capacitor voltage becomes iR = Vcap, or 
 

Ve−t /RC = V(1 − e−t/RC) 
 
where Eqs. 27-34 and 27-35 have been used.  This leads to t = RC ln2, or  t =  0.208 ms. 
 
58. (a) τ = RC = (1.40 × 106 Ω)(1.80 × 10–6 F) = 2.52 s. 
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(b) qo = εC = (12.0 V)(1.80 μ F) = 21.6 μC. 
 
(c) The time t satisfies q = q0(1 – e–t/RC), or 
 

( )0

0

21.6 Cln 2.52s ln 3.40s.
21.6 C 16.0 C

qt RC
q q

μ
μ μ

⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟− −⎝ ⎠⎝ ⎠

 

 
59. During charging, the charge on the positive plate of the capacitor is given by 
 

q C e t= − −ε τ1c h,  
 
where C is the capacitance, ε is applied emf, and τ = RC is the capacitive time constant. 
The equilibrium charge is qeq = Cε. We require q = 0.99qeq = 0.99Cε, so 
 

0 99 1. .= − −e t τ  
 
Thus, e t− =τ 0 01. .  Taking the natural logarithm of both sides, we obtain t/τ = – ln 0.01 = 
4.61 or t = 4.61τ. 
 
60. (a) We use q = q0e–t/τ, or t = τ ln (q0/q), where τ = RC is the capacitive time constant. 
Thus,  

0 1/3
1/3

0

3ln ln 0.41 0.41.
2 / 3 2

q tt
q

τ τ τ
τ

⎛ ⎞ ⎛ ⎞= = = ⇒ =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

 

(b) 0 2/3
2 /3

0

ln ln3 1.1 1.1.
/ 3

q tt
q

τ τ τ
τ

⎛ ⎞
= = = ⇒ =⎜ ⎟

⎝ ⎠
 

 
61. (a) The voltage difference V across the capacitor is V(t) = ε(1 – e–t/RC). At t = 1.30 μs 
we have V(t) = 5.00 V, so 5.00 V = (12.0 V)(1 – e–1.30 μs/RC), which gives  
 

τ = (1.30 μ s)/ln(12/7) = 2.41 μs. 
 
(b) The capacitance is C = τ/R = (2.41 μs)/(15.0 kΩ) = 161 pF. 
 
62. The time it takes for the voltage difference across the capacitor to reach VL is given 
by V eL

t RC= − −ε 1c h . We solve for R: 
 

R t
C VL

=
−

=
× −

= ×
−ln

.
. ln . . .

.
ε εb g c h b g

0500
0150 10 950 950 72 0

2 35 10
6

6s
F V V V

Ω  

 
where we used t = 0.500 s given (implicitly) in the problem. 
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64. (a) The potential difference V across the plates of a capacitor is related to the charge q 
on the positive plate by V = q/C, where C is capacitance. Since the charge on a 
discharging capacitor is given by q = q0 e–t/τ, this means V = V0 e–t/τ where V0 is the initial 
potential difference. We solve for the time constant τ by dividing by V0 and taking the 
natural logarithm: 

τ = − = − =
t

V Vln
s

ln V V
s.

0

10 0
100 100

217b g b g b g
.

.
.    

 
(b) At t = 17.0 s, t/τ = (17.0 s)/(2.17 s) = 7.83, so 
 

V V e et= = = ×− − −
0

7 83 2100 396 10τ V Vb g . . .  
 
65. In the steady state situation, the capacitor voltage will equal the voltage across R2 = 
15 kΩ: 

( )0 2
1 2

20.0V15.0 k 12.0V.
10.0 k 15.0 k

V R
R R

ε ⎛ ⎞
= = Ω =⎜ ⎟+ Ω + Ω⎝ ⎠

 

 
Now, multiplying Eq. 27-39 by the capacitance leads to V = V0e–t/RC describing the 
voltage across the capacitor (and across R2 = 15.0 kΩ) after the switch is opened (at t = 0). 
Thus, with t = 0.00400 s, we obtain 
 

V e= =
− × −

12 6160 004 15000 0 4 10 6b g b ge j. . . V.  
 
Therefore, using Ohm’s law, the current through R2 is 6.16/15000 = 4.11 × 10–4 A. 
 
66. We apply Eq. 27-39 to each capacitor, demand their initial charges are in a ratio of 
3:2 as described in the problem, and solve for the time. With 
 

6 4
1 1 1

6 5
2 2 2

(20.0 )(5.00 10 F) 1.00 10 s

(10.0 )(8.00 10 F) 8.00 10 s ,

R C

R C

τ

τ

− −

− −

= = Ω × = ×

= = Ω × = ×
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iε = × = ×− −9 55 10 4 00 382 107 6. . .A V W.c hb g  

 
The energy delivered by the battery is either stored in the capacitor or dissipated in the 
resistor. Conservation of energy requires that iε = (q/C) (dq/dt) + i2R. Except for some 
round-off error the numerical results support the conservation principle. 
 
70. (a) From symmetry we see that the current through the top set of batteries (i) is the 
same as the current through the second set. This implies that the current through the R = 
4.0 Ω resistor at the bottom is iR = 2i. Thus, with r denoting the internal resistance of each 
battery (equal to 4.0 Ω) and ε denoting the 20 V emf, we consider one loop equation (the 
outer loop), proceeding counterclockwise: 
 

3 2 0ε − − =ir i Rb g b g .  
 
This yields i = 3.0 A. Consequently, iR = 6.0 A. 
 
(b) The terminal voltage of each battery is ε – ir = 8.0 V. 
 
(c) Using Eq. 27-17, we obtain P = iε = (3)(20) = 60 W. 
 
(d) Using Eq. 26-27, we have P = i2r = 36 W. 
 
71. (a) If S1 is closed, and S2 and S3 are open, then  ia = ε/2R1 = 120 V/40.0 Ω = 3.00 A. 
 
(b) If S3 is open while S1 and S2 remain closed, then   
 

Req = R1 + R1 (R1 + R2) /(2R1 + R2) = 20.0 Ω + (20.0 Ω) × (30.0 Ω)/(50.0 Ω) = 32.0 Ω, 
 
so ia = ε/Req = 120 V/32.0 Ω = 3.75 A. 
 
(c) If all three switches S1, S2, and S3 are closed, then Req = R1 + R1 R'/(R1 + R') where  
 

R' = R2 + R1 (R1 + R2)/(2R1 + R2) = 22.0 Ω, 
that is,  

Req = 20.0 Ω + (20.0 Ω) (22.0 Ω)/(20.0 Ω + 22.0 Ω) = 30.5 Ω, 
 
so ia = ε/Req = 120 V/30.5 Ω = 3.94 A. 
 
72. (a)  The four resistors R1, R2, R3, and R4 on the left reduce to  
 

 3 41 2
eq 12 34

1 2 3 4

7.0 3.0 10R RR RR R R
R R R R

= + = + = Ω + Ω = Ω
+ +

. 
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With 30 Vε = across Req the current there is i2 = 3.0 A. 
 
(b) The three resistors on the right reduce to  
 

5 6
eq 56 7 7

5 6

(6.0 )(2.0 ) 1.5 3.0
6.0 2.0

R RR R R R
R R

Ω Ω′ = + = + = + Ω = Ω
+ Ω + Ω

. 

 
With 30 Vε =  across eqR′ the current there is i4 = 10 A. 
 
(c) By the junction rule, i1 = i2 + i4 = 13 A. 
 
(d) By symmetry, i3 = 12 i2 = 1.5 A. 
 
(e) By the loop rule (proceeding clockwise), 
 

30V – i4(1.5 Ω) – i5(2.0 Ω)  =  0 
 
readily yields i5 = 7.5 A. 
 
73. (a) The magnitude of the current density vector is 
 

( ) ( )
( )

( )( )23
1 2 1 2

27

4 60.0V4V

0.127 0.729 2.60 10 m

1.32 10 A m .

A
i VJ
A R R A R R Dπ π

2 −
= = = =

+ + Ω + Ω ×

= ×

 

 
(b) VA = V R1/(R1 + R2) = (60.0 V)(0.127 Ω)/(0.127 Ω + 0.729 Ω) = 8.90 V.  
 
(c) The resistivity of wire A is  
 

2 3 2
8(0.127 )(2.60 10 m) 1.69 10 m .

4 4(40.0m)
A A

A
A A

R A R D
L L

π πρ
−

−Ω ×
= = = = × Ω⋅  

 
So wire A is made of copper. 
 
(d) 271.32 10 A m .B AJ J= = ×  
 
(e) VB = V – VA = 60.0 V – 8.9 V = 51.1 V. 
 
(f) The resistivity of wire B is ρ B = × ⋅−9 68 10 8. Ω m, so wire B is made of iron. 
 
74. The resistor by the letter i is above three other resistors; together, these four resistors 
are equivalent to a resistor R = 10 Ω (with current i). As if we were presented with a 
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maze, we find a path through R that passes through any number of batteries (10, it turns 
out) but no other resistors, which — as in any good maze — winds “all over the place.” 
Some of the ten batteries are opposing each other (particularly the ones along the outside), 
so that their net emf is only ε = 40 V.  
 
(a) The current through R is then i = ε/R = 4.0 A. 
 
(b) The direction is upward in the figure. 
 
75. (a) In the process described in the problem, no charge is gained or lost. Thus, q = 
constant. Hence,  

( ) 31
1 1 2 2 2 1

2

150200 3.0 10 V.
10

Cq C V C V V V
C

⎛ ⎞= = ⇒ = = = ×⎜ ⎟
⎝ ⎠

 

 
(b) Equation 27-39, with τ = RC, describes not only the discharging of q but also of V. 
Thus, 
 

( ) ( )9 120
0

3000ln 300 10 10 10 F ln
100

t VV V e t RC
V

τ− −⎛ ⎞ ⎛ ⎞= ⇒ = = × Ω × ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

 
which yields t = 10 s. This is a longer time than most people are inclined to wait before 
going on to their next task (such as handling the sensitive electronic equipment). 
 
(c) We solve  V V e t RC= −

0 for R with the new values V0 = 1400 V and t = 0.30 s. Thus, 
 

R t
C V V

= =
×

= ×
−ln

.
ln

. .
0

12
100 30

10 10 1400 100
11 10b g c h b g

s
F

Ω  

 
76. (a)  We reduce the parallel pair of resistors (at the bottom of the figure) to a single R’ 
=1.00 Ω resistor and then reduce it with its series ‘partner’ (at the lower left of the figure) 
to obtain an equivalence of R′′ = 2.00 Ω +1.00Ω =3.00 Ω.  It is clear that the current 
through R′′  is the i1 we are solving for.  Now, we employ the loop rule, choose a path 
that includes R′′  and all the batteries (proceeding clockwise).  Thus, assuming i1 goes 
leftward through R′′ , we have 
 

5.00 V + 20.0 V −10.0 V − i1R”  = 0 
 

which yields i1 = 5.00 A. 
 
(b) Since i1 is positive, our assumption regarding its direction (leftward) was correct. 
 
(c) Since the current through the ε1 = 20.0 V battery is “forward”, battery 1 is supplying 
energy. 
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78. The current in the ammeter is given by  
 

iA = ε/(r + R1 + R2 + RA). 
 
The current in R1 and R2 without the ammeter is i = ε/(r + R1 + R2). The percent error is 
then 
 

1 2

1 2 1 2

0.101
2.0 5.0 4.0 0.10

0.90%.

A A

A A

i i r R R Ri
i i r R R R r R R R

− + +Δ Ω
= = − = =

+ + + + + + Ω + Ω + Ω + Ω

=

 

 
79. (a) The charge q on the capacitor as a function of time is q(t) = (εC)(1 – e–t/RC), so the 
charging current is i(t) = dq/dt = (ε/R)e–t/RC. The energy supplied by the emf is then 
 

U i dt
R

e dt C Ut RC
C= = = =−∞∞ zz ε ε ε

2

0

2

0
2  

 

where U CC =
1
2

2ε  is the energy stored in the capacitor. 

 
(b) By directly integrating i2R we obtain 
 

U i Rdt
R

e dt CR
t RC= = =−∞∞ zz 2

2
2

00

21
2

ε ε .  

 
80. In the steady state situation, there is no current going to the capacitors, so the resistors 
all have the same current.  By the loop rule, 
 

20.0 V  =  (5.00 Ω)i + (10.0 Ω)i + (15.0 Ω)i 
 
which yields i = 23 A.  Consequently, the voltage across the R1 = 5.00 Ω resistor is (5.00 
Ω)(2/3 A) = 10/3 V, and is equal to the voltage V1 across the C1 = 5.00 μF capacitor.  
Using Eq. 26-22, we find the stored energy on that capacitor: 
 

 
2

2 6 5
1 1 1

1 1 10(5.00 10  F) V 2.78 10  J
2 2 3

U C V − −⎛ ⎞= = × = ×⎜ ⎟
⎝ ⎠

. 

 
Similarly, the voltage across the R2 = 10.0 Ω resistor is (10.0 Ω)(2/3 A) = 20/3 V and is 
equal to the voltage V2 across the C2 = 10.0 μF capacitor. Hence, 
 

2
2 6 5

2 2 2
1 1 20(10.0 10  F) V 2.22 10  J
2 2 3

U C V − −⎛ ⎞= = × = ×⎜ ⎟
⎝ ⎠
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Therefore, the total capacitor energy is U1  + U2  = 2.50 × 10−4 J. 
 
81. The potential difference across R2 is 
 

V iR R
R R R2 2

2

1 2 3

12 4 0
30 4 0 50

4 0= =
+ +

=
+ +

=
ε V

V.b gb g.
. . .

.
Ω

Ω Ω Ω
 

 
82. From Va – ε1 = Vc – ir1 – iR and i = (ε1 – ε2)/(R + r1 + r2), we get 
 

( )1 2
1 1 1 1

1 2

( )

4.4V 2.1V4.4V (2.3 5.5 )
5.5 1.8 2.3

2.5V.

a cV V i r R r R
R r r

ε εε ε
⎛ ⎞−

− = − + = − +⎜ ⎟+ +⎝ ⎠
⎛ ⎞−

= − Ω + Ω⎜ ⎟Ω + Ω + Ω⎝ ⎠
=

 

 
83. The potential difference across the capacitor varies as a function of time t as 

/
0( ) t RCV t V e−= . Thus, 

( )0

.
ln

tR
C V V

=  

 

(a) Then, for tmin = 10.0 μs, 
( ) ( )min

10.0 s 24.8 .
0.220 F ln 5.00 0.800

R μ
μ

= = Ω  

 
(b) For tmax = 6.00 ms, 

Rmax
.

.
. . ,=

F
HG

I
KJ = ×

6 00
10 0

24 8 149 104ms
sμ

Ω Ωb g  

 
where in the last equation we used τ = RC. 
 
84. (a) Since ( ) 2

tank 140 , 12 V 10 140 8.0 10 AR i −= Ω = Ω + Ω = × . 
 
(b) Now, Rtank = (140 Ω + 20 Ω)/2 = 80 Ω, so i = 12 V/(10 Ω + 80 Ω) = 0.13 A. 
 
(c) When full, Rtank = 20 Ω so i = 12 V/(10 Ω + 20 Ω) = 0.40 A. 
 
85. The internal resistance of the battery is r = (12 V –11.4 V)/50 A = 0.012 Ω < 0.020 Ω, 
so the battery is OK. The resistance of the cable is  
 

R = 3.0 V/50 A = 0.060 Ω > 0.040 Ω, 
 
so the cable is defective. 


