3.1 Reflection and Refraction

- Geometrical Optics
- Reflection
- Refraction

Dispersion

Christian Huygens

Geometrical optics

In geometrical optics light waves are considered to move in straight lines. This is a good description as long as the waves do not pass through small openings (compared to λ)

What are some examples of these processes in this

Specular Reflection

Diffuse reflection (scattering)

Transmission

Absorption

Refraction

- Refraction is the bending of light when it passes across an interface between two materials.
- Due to the differences in the speed of light in different media.

Indices of Refraction for Various Substances, Measured with Light of Vacuum Wavelength $\lambda_0 = 589 \text{ mn}$				
Substance	Index of Refraction	Substance	Index o Refractio	
Solids at 20°C		Liquids at 20°C		
Diamond (C)	2.419	Benzene	1.501	
Fluorite (CaF2)	1.434	Carbon disulfide	1.628	
Fused quartz (SiO ₂)	1.458	Carbon tetrachloride	1.461	
Glass, crown	1.52	Ethyl alcohol	1.361	
Glass, flint	1.66	Glycerine	1.473	
Ice (H ₂ O) (at 0°C)	1.309	Water	1.333	
Polystyrene	1.49			
Sodium chloride (NaCl)	1.544	Gases at 0°C, 1 atm		
Zircon	1.923	Air	1.000 29	
		Carbon dioxide	1.000 45	

An optica material of the fib possible	Dptical Fiber -Li al fiber (light pipe) confines to by total internal reflection. I ber is 1.52 what is the smalle when the light pipe is in air.	ght Pipe the light inside the f the refractive index ast angle of incidence	
	θ ₂ = 90	n ₂ =1.00	
	θ_1	n ₁ =1.52	
	$n_1 \sin \theta_1 = n_2 \sin \theta_2$		
$\sin \theta_1 = \frac{n_2 \sin 90}{n_1} = \frac{(1.0)(1.0)}{1.52} = 0.66$			
	$\theta_1 = 41^{\circ}$ θ_1 must b	e > 41º	

we would get a single thread over one billion killometers long – which is enough to encircle the globe more than 25 000 times – and is increasing by thousands of kilometers every hour.

